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1 Introduction

The specification of necessary and sufficient conditions under which the Shapley value
belongs to the core of a transferable utility game is an old question: under which condi-
tions does the Shapley value define an allocation that is stable, in the sense that it raises
no objection from individual players or coalitions? This question has been dealt with in
a number of papers: Iñarra and Usategui (1993), Izawa and Takahashi (1998), Yokote
et al. (2015, 2017) and Abe and Nakada (2022).

Our objective is more modest: obtain a simple and interpretable condition that is
necessary and sufficient to ensure that the Shapley value belongs to the core of 3-player
superadditive games. We use this result to compute the proportion of superadditive and
balanced games whose Shapley value belongs to the core. It is found to be equal to 0.64, in
line with a previous conjecture by Fukiharu (2013) based on numerical simulations. This
confirms that strong restrictions must be imposed on balancedness. On the other hand it
is more than twice the share of the set of convex games, showing that the Shapley value
defines a core allocation for a considerably larger superset of the set of convex games.

The paper is organized as follows. Section 2 introduces the concept of transferable
utility game. The core and the Shapley value are then defined in the following two
sections. In Section 5, working on normalized 3-player games, it is shown that the 2-
player coalition with the highest worth is pivotal in determining whether or not the
Shapley value belongs to the core. This property is then used to specify a necessary and
sufficient condition on the distribution of the worth of 2-player coalitions under which
the Shapley value belongs to the core. The proportions of the latter set of games and of
the set of convex games within the wider set of superadditive and balanced games are
then dealt with in Section 6. Concluding remarks are offered in the last section.

2 Transferable utility games

A transferable utility game on a set of players N = {1, . . . , n} is defined by a function
v that associates a real number to every subset S ⊂ N . Here, v(S) is the ”worth” of
coalition S expressed in terms of some commodity-money.

A game (N, v) is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all pairs of disjoint
coalitions S and T . Superadditivity is a natural assumption: the players have a potential
interest in forming the ”grand coalition” N and the question concerns the division of
v(N) among the n players. Under superadditivity, we have

∑

i∈N v(i) ≤ v(N). A game
is essential if the latest inequality is strict: it is possible to allocate v(N) so as to give to
each player more than their individual worth.

A game (N, v) is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for arbitrary pairs of
coalitions S and T ; convexity implies superadditivity. Convexity can be defined in terms
of marginal contributions. The marginal contribution of player i to coalition S is defined
by MCv

i (S) = v(S)− v(S\i). A game is convex if and only if marginal contributions are
non-decreasing with respect to coalition sizes: i ∈ S ⊂ T ⇒ MCv

i (S) ≤ MCv
i (T ).

1

Without loss of generality, essential games can be normalized such that individual

1A result due to Shapley (1971) and Ichiishi (1981). More on TU-games in Maschler et al. (2020) and
Dehez (2024).



worth’s equal zero and the worth of the grand coalition equals 1:

v̄(S) =
v(S)−

∑

j∈S v(j)

v(N)−
∑

j∈N v(j)
for all S ⊂ N.

A game and its normalized version are strategically equivalent : v̄(S) = α v(S) + β(S)
where

α =
1

v(N)−
∑

j∈N v(j)
and βi =

−v(i)

v(N)−
∑

j∈N v(j)
(i = 1, . . . , n).

The allocation (x1, . . . , xn) associated to the game (N, v) and the allocation (x̄1, . . . , x̄n)
associated to its normalized version (N, v̄) are related by the equations x̄i = αxi + βi,
(i = 1, . . . , n). This is the property of covariance that will be used later.

Notation. Finite sets are denoted by upper-case letters and lower-case letters are used to
denote their cardinals: t = |T |, s = |S|, . . . For a given vector x, x(S) denotes the sum of
its coordinates over the set S. Braces are sometimes omitted for coalitions: for instance,
v(i, j) replaces v({i, j}).

We denote by Γ3 the set of all 3-player superadditive and essential games. Given a
game (N, v) ∈ Γ3 and following Tchantcho et al. (2012), we define successively:

a(v̄) = min (v̄(1, 2), v̄(1, 3), v̄(2, 3)) ,

c(v̄) = max (v̄(1, 2), v̄(1, 3), v̄(2, 3)) .

Players are labelled in such a way that a(v̄) = v̄(1, 2) and c(v̄) = v̄(2, 3). The worth
of the intermediary coalition is then denoted by b(v̄) = v̄(1, 3). Superadditivity of the
original game implies that the three parameters a(v̄), b(v̄) and c(v̄) belong to the interval
[0, 1]. Hence, we will consider normalized games defined by vectors (0, 0, 0|a, b, c|1) where
0 ≤ a ≤ b ≤ c ≤ 1.

Superadditivity and convexity are preserved through normalization. In particular,
a game is convex if and only if its normalized version (N, v̄) is convex. The following
proposition characterizes convexity in terms of the parameters b(v̄) and c(v̄).

Proposition 1. A game (N, v) ∈ Γ3 is convex if and only if b(v̄) + c(v̄) ≤ 1.

Proof. For the coalitions S = {1, 3} and T = {2, 3}, we have v̄(S) + v̄(T ) = b(v̄) + c(v̄)
and v̄(S∪T )+ v̄(S∩T ) = 1. Hence, if the game is convex, the inequality holds. Inversely,
assume that the inequality holds. Clearly the convexity condition holds independently
from the inequality b(v̄) + c(v̄) ≤ 1 in either one of the following two cases: given two
distinct coalitions S and T in N , (i) either S or T is the grand coalition or (ii) S and T
have empty intersection. There remain two cases to consider. If S = {i, j} and T = {i},
we have v̄(S∪T )+ v̄(S∩T ) = v̄(S) and v̄(S)+ v̄(T ) = v̄(S). If S = {i, j} and T = {i, k},
we have v̄(S ∪T )+ v̄(S ∩T ) = 1 and v̄(S)+ v̄(T ) ≤ b(v̄)+ c(v̄). It is the only case where
the inequality b(v̄) + c(v̄) ≤ 1 is being used.

3 The core

Two minimal conditions are to be imposed on allocations. Efficiency requires that the
entire value of a game is distributed to the players. Individual rationality requires that all
players should obtain at least their individual worth. Together, these two requirements
define imputations and superadditivity ensures their existence2. The core is the set of

2The imputation set of a normalized n-player game is the unit simplex of dimension n− 1.



allocations obtained by extending to coalitions the requirement of individual rationality3.
In general, given a game (N, v) the core is the set of allocations that give to each coalition
at least its worth:

C(N, v) = {x ∈ R
n |x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N } .

Core allocations are stable: no coalition is in a position to raise an objection against a
core allocation. The core may be empty. Bondareva (1963) and Shapley (1967) have
independently given necessary and sufficient conditions under which the core of a game
is nonempty. This is the notion of balancedness. A 3-player game (N, v) is balanced if

and only if the following five inequalities are verified:

v(1) + v(2) + v(3) ≤ v(1, 2, 3),

v(1, 2) + v(3) ≤ v(1, 2, 3),

v(1, 3) + v(2) ≤ v(1, 2, 3), (1)

v(2, 3) + v(1) ≤ v(1, 2, 3),

v(1, 2) + v(1, 3) + v(2, 3) ≤ 2v(1, 2, 3).

For superadditive games, only the last inequality matters4. The core of the normalized
version of a game (N, v) ∈ Γ3 is defined by:

C(N, v̄) = {x ∈ R
n |x1 + x2 + x3 = 1, 0 ≤ xi ≤ 1− v̄(j, k) for all i ̸= j ̸= k} .

and the condition of balancedness is given by:

a(v̄) + b(v̄) + c(v̄) ≤ 2. (2)

Remark 1. Because the way the three terms in (2) are ordered, balancedness of a 3-player

normalized game implies that a(v̄) ≤ 2
3
.

4 The Shapley value

Looking at allocation rules, the simplest one is equal division. Equal division of the
surplus is slightly more sophisticated. It is given by:

EDSi(N, V ) = v(i) +
1

n

(

v(N)−
∑

i∈N
v(i)

)

(i = 1, . . . , n). (3)

It does not take into account differences in players’ contribution. The Shapley value is an
allocation rule introduced by Shapley in 1953. It is uniquely defined by a set of axioms
that includes equal treatment of equals. Several formulas can be used to compute the
Shapley value. We take the original one where players get a weighted average of their
marginal contributions:

SVi(N, v) =
∑

S⊂N

αn(s)MCv
i (S) (i = 1, . . . , n)

where αn(s) =
(s−1)!(n−s)!

n!
. Applied to the normalized version of a 3-player game, we have:

SVi(N, v̄) =
1

6
(v̄(i, j) + v̄(i, k)) +

1

3
(1− v̄(j, k)) .

3The notion of core was introduced by Gillies (1953) in relation to the concept of von Neumann-
Morgenstern stable set and was established as a solution concept by Shapley (1955). See Zhao (2018).

4A game can be balanced but not superadditive, like for instance the game (1, 2, 3|2, 5, 8|10).



Hence, dropping the dependence upon v̄, we have:

SV1(N, v̄) =
1

6
(a+ b) +

1

3
(1− c) ,

SV2(N, v̄) =
1

6
(a+ c) +

1

3
(1− b) , (4)

SV3(N, v̄) =
1

6
(b+ c) +

1

3
(1− a) .

5 Relations between the core and the Shapley value

In general, nothing ensures that the Shapley value belongs to the core of a balanced game.
Shapley (1971) has proven that it is the case for convex games, but it may also be the
case for nonconvex games. Here are two possible cases.

Remark 2. A superadditive and inessential game is additive, in which case, the core

consists of the allocation that assigns to players their individual worth and it coincides

with the Shapley value5. This justifies our attention to essential games.

Remark 3. In the 2-player case, the core is nonempty if and only if superadditivity holds,

in which case the Shapley value coincides with the equal division of the surplus (3) and

belongs to the core.

The core and the Shapley value are covariant solutions. Hence, the Shapley value of
a game (N, v) ∈ Γ3 belongs to its core if and only if the Shapley value of its normalized
version (N, v̄) belongs to its core. The Shapley value of the normalized version (4) defines
an imputation: the SVi’s are non-negative and sum up to one. It defines a core allocation
if and only if SVi(N, v̄) + SVj(N, v̄) ≥ v̄(i, j) for all pairs (i, j):

a+ b

6
+

1− c

3
+

a+ c

6
+

1− b

3
≥ a ⇔

2(1− a− b− c)

3
+

b+ c

2
≥ 0,

a+ b

6
+

1− c

3
+

b+ c

6
+

1− a

3
≥ b ⇔

2(1− a− b− c)

3
+

a+ c

2
≥ 0, (5)

a+ c

6
+

1− b

3
+

b+ c

6
+

1− a

3
≥ c ⇔

2(1− a− b− c)

3
+

a+ b

2
≥ 0.

These three inequalities appear in Yokote et al. (2015). The following proposition says
that the coalition with the highest value is critical in determining the stability of the
Shapley value.

Proposition 2. The Shapley value of game (N, v) ∈ Γ3 belongs to the core if and only if,

within its normalized version (N, v̄), the 2-player coalition with the highest worth raises

no objection.

Proof. Given (5) and assuming that the inequalities 0 ≤ a ≤ b ≤ c hold, SV2 + SV3 ≥ c
implies SV1 + SV3 ≥ b and SV1 + SV2 ≥ a.

The following proposition is an immediate corollary of Proposition 2.

Proposition 3. Given a normalized game (0, 0, 0|a, b, c|1) where 0 ≤ a ≤ b ≤ c, the

Shapley value belongs to its core if and only if:

c ≤ 1−
a+ b

4
. (6)

5A game is additive if the worth of any coalition equals the sum of its members’ worth.



Example. Consider the following 3-player game (25, 15, 20|40, 69, 66|z). The balanced-
ness conditions (1) are satisfied for z ≥ 91. Under this inequality, the game is superad-
ditive and essential. Its normalized version is given by

a = v̄(1, 2) = 0, b = v̄(1, 3) =
24

z − 60
and c = v̄(2, 3) =

31

z − 60
.

Convexity applies for z ≥ 115. Condition (6) is satisfied with equality for z = 97: the
Shapley value of the original game (N, v) belongs to the core if and only if z ≥ 97. For
z = 97, it is given by the allocation (31, 24.5, 41.5) that lies on the boundary of the core.

Remark 4. The inequality c ≤ 2
3
is a sufficient condition for the Shapley value to be

stable.

Indeed, (6) can be written as a + b + c ≤ 4 − 3c, an inequality that is verified, for a
balanced game, if c ≤ 2

3
. In the case of a symmetric game, where the worth of a coalition

only depends on the its cardinality, (6) reduces to k ≤ 2
3
where k is the worth of a 2-player

coalition.
For a general 3-player superadditive game (N, v), the above results translate as follows:

Proposition 4. Given a game (N, v) ∈ Γ3, the Shapley value belongs to the core if and

only if the following inequalities hold for every player i ∈ N :

MCv
i (i) +

MCv
i (i, j) +MCv

i (i, k)

2
≤ 2MCv

i (N). (7)

Proof. Relabel the players in N in such a way that

v(1, 2)− v(1)− v(2) ≤ v(1, 3)− v(1)− v(3) ≤ v(2, 3)− v(2)− v(3).

Dividing the above inequalities by ∆ = v(N) − v(1) − v(2) − v(3), we get v̄(1, 2) ≤
v̄(1, 3) ≤ v̄(2, 3). These numbers belong to the interval [0, 1] by superadditivity, so that
Proposition 3 applies, where (6) becomes 4(1 − v̄(2, 3)) ≥ v̄(1, 2) + v̄(1, 3). In view of
Proposition 3 and strategic equivalence, the latter condition is necessary and sufficient
for the Shapley value to belong to the core. And, in view of Proposition 2, it is also
necessary and sufficient for the three inequalities 4 (1− v̄(j, k)) ≥ v̄(i, j) + v̄(i, k) to be
satisfied for all i, j, k ∈ {1, 2, 3}, i ̸= j ̸= k. Multiplying both sides of the last inequalities
by ∆, they become

4 (∆− v(j, k) + v(j) + v(k)) ≥ v(i, j) + v(i, k)− 2v(i)− v(j)− v(k)

or equivalently
4MCv

i (N) ≥ 2MCv
i (i) +MCv

i (i, j) +MCv
i (i, k).

Then, dividing by 2, we obtain the inequalities (7).

Condition (7) says that the average of the average marginal contributions of a player
does not exceed his marginal contribution to the grand coalition. Proposition 4 states
that, if this condition is met by all players, the Shapley value is in the core. Conversely,
it is enough for a player not to satisfy (7) to make the Shapley value unstable since the
complementary 2-player coalition could object. In the above example, condition (7) is
met by all players for z ≥ 97. For lower values of z, (7) is not satisfied by (at least) the
first player: coalition {2, 3} could object since SV2 + SV3 < 66 = v(2, 3).



6 On the proportion of games whose Shapley value
is stable

Using simulations, Fukiharu (2013) has estimated that the proportion of 3-player super-
additive and balanced games whose Shapley value belongs to the core lies between 0.60
and 0.65. Using the strategic equivalence between a game and its normalized version,
Proposition 3 can be used to compute exactly this proportion for games of the form
(0, 0, 0|a, b, c|1) assuming that 0 ≤ a ≤ b ≤ c ≤ 1.

Let us fix a particular value of the parameter a, where a ∈
[

0, 2
3

]

as a consequence
of Remark 1. Working in the space of coordinates b and c, we distinguish two subsets of
the set of balanced games B(a) = {(b, c)|0 ≤ a ≤ b ≤ c ≤ 1 and b+ c ≤ 2− a}: the set
SC(a) of games whose Shapley value is stable and the set Con(a) of convex games. We
know that Con(a) ⊂ SC(a) ⊂ B(a) for all a ∈

[

0, 2
3

]

.
We distinguish two cases: Figure 1 corresponds to a situation where a is below 1

2
while

Figure 2 corresponds to a situation where a is above 1
2
.

c

b

c = b
1

1

c = 1− a+b
4

a+ b+ c = 2

b+ c = 1

B
(a)

Con(a) SC
(a
)

a 1− a 4−a
5

2−a
2

Figure 1: a < 1
2

c

b

c = b
1

1

c = 1− a+b
4

a+ b+ c = 2

b+ c = 1

B
(a)

SC
(a
)

a 4−a
5

2−a
2

Con(a) = ∅

Figure 2: a > 1
2



In both figures, the set B(a) is the total shaded area. According to Proposition 1,
the subset Con(a) is nonempty whenever b + c ≤ 1. We observe that Con(a) = ∅ for a
larger than 1

2
. Indeed, a > 1

2
implies b + c > 1. The set SC(a) contains the pairs b + c

such that c ≤ 1− a+b
4
. It is nonempty for all a ∈

[

0, 2
3

]

.
We have all elements to compute the shares of Shapley-stable and convex games within

the set of 3-player superadditive and balanced games, assuming that the values of the
parameters are equally likely. For a given value of a ∈

[

0, 2
3

]

and referring to the above
figures, we have:

B(a) =



















∫ 1−a

a

(1− b)db+

∫ 1−a

2

1−a

(2− a− 2b)db =
1

2
− a+

a2

4
for a ∈

[

0, 1
2

]

∫ 1−a

2

a

(2− a− 2b)db =
1

4
(2− 3a)2 for a ∈

[

1
2
, 2
3

]

,

SC(a) =

∫ 4−a

5

a

(

1−
a+ b

4
− b

)

db =
(2− 3a)2

10
for a ∈

[

0, 2
3

]

,

Con(a) =

∫ 1

2

a

(1− 2b) db = a2 − a+
1

4
for a ∈

[

0, 1
2

]

.

Hence, we have successively:

B =

∫ 2

3

0

B(a)da =
5

36
≈ 0.139,

SC =

∫ 2

3

0

SC(a)da =
4

45
≈ 0.089 →

SC

B
=

4/45
5/36

= 0.64,

Con =

∫ 1

2

0

Con(a)da =
1

24
≈ 0.0417 →















Con

B
=

1/24
5/36

= 0.3,

Con

SC
=

1/24
4/45

= 0.46875.

Hence, 64% of the superadditive and balanced games are Shapley-stable, confirming Fuk-
iharu estimation, 30% of the superadditive and balanced games are convex and about
47% of the Shapley-stable games are convex. We observe that the stability condition (6)
imposes a considerable relaxation of convexity. Finally we add the following:

Remark 5. Positive games, games whose Harsanyi dividends are non-negative, are con-

vex and form a class on which solution concepts tend to converge6. For a 3-player nor-

malized game (0, 0, 0|a, b, c|1), positivity applies whenever a, b and c are non-negative and

a+ b+ c ≤ 1. Computations reveal that 20% of the convex games are positive.

7 Concluding remarks

We have only considered 3-player games where we obtain a single inequality involving
three parameters. Moving to a larger set of players would require finding inequalities
involving a much larger number of parameters. Considering n-player games, Izawa and

6See Harsanyi (1959) and Dehez (2017) for an extensive study of Harsanyi dividends and related
concepts.



Takahashi (1998) have introduced the following necessary and sufficient conditions
∑

S⊂N

∑

i∈S∩T

αn(s) ((v(S)− v(S\i))− (v(S ∩ T )− v((S ∩ T )\i))) ≥ 0

for all T ⊂ N , where the coefficients αn(s) are the Shapley weights. Applied to the
normalized version of a game in Γ3, the above condition is equivalent to (6) for T = {2, 3}.

Yokote, Funaki, and Kamijo (2017) provide a necessary and sufficient condition that
applies to 3-player 0-normalized games (Remark 2, p.5). For superadditive normalized
games, it reduces to the following two inequalities:

4c+ b+ a ≤ 4,

2c ≤ a+ b+ 2.

Since c ≤ 1, the second inequality is always verified: only the first one matters and is
equivalent to (6).
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