

Volume 44, Issue 3

A gamma variate generator with shape parameter less than unity

Seiji Zenitani

Space Research Institute, Austrian Academy of Sciences

Abstract
Algorithms for generating random numbers that follow a gamma distribution with shape parameter less than unity are

proposed. Acceptance-rejection algorithms are developed, based on the generalized exponential distribution. The

squeeze technique is applied to our method, and then piecewise envelope functions are further considered. The

proposed methods are excellent in acceptance efficiency and promising in speed.

Citation: Seiji Zenitani, (2024) ''A gamma variate generator with shape parameter less than unity'', Economics Bulletin, Volume 44, Issue 3,

pages 1113-1122

Contact: Seiji Zenitani - seiji.zenitani@oeaw.ac.at.

Submitted: June 11, 2024. Published: September 30, 2024.

1 Introduction

The gamma distribution is one of the most important probability distributions in statis-
tics. It has applications in a broad range of ields in natural sciences, engineering, and
social sciences. The probability density is deined by

fGA(x;α, λ) =
1

λαΓ(α)
xα−1e−x/λ (x ≥ 0) (1)

where α (> 0) is the shape parameter, λ (> 0) the scale parameter, and Γ(x) the gamma
function.

Generating a gamma variate, a random number drawn from a gamma distribution,
is an important and fundamental problem in statistical computing. Owing to its impor-
tance, various numerical algorithms have been developed since the early days of computer
age (Ahrens & Dieter, 1974; Best, 1983; Devroye, 1986; Marsaglia & Tsang, 2000; Kundu
& Gupta, 2007; Tanizaki, 2008; Yotsuji, 2010; Kroese et al., 2011).

The nature of the gamma distribution is controlled by the shape parameter α. Accord-
ingly, we need to use diferent gamma variate generators. When 1 < α, the distribution
function increases from zero at x = 0, has a maximum at x = (α− 1)λ, and then decays
as x further increases. To generate a gamma variate with α > 1, probably Marsaglia &
Tsang (2000)’s algorithm is one of the best, as detailed in literature (Marsaglia & Tsang,
2000; Yotsuji, 2010; Kroese et al., 2011). When α = 1, the distribution is reduced to the
exponential distribution, and it is easy to generate a variate.

When 0 < α < 1, which is the range of our interest, the gamma distribution mono-
tonically decreases from positive ininity at x = 0 to zero at x → ∞. To generate a
gamma variate for 0 < α < 1, various acceptance-rejection methods have been developed
(Ahrens & Dieter, 1974; Best, 1983; Devroye, 1986; Kundu & Gupta, 2007). Combining
power-law and exponential distributions, Ahrens & Dieter (1974) proposed a piecewise
rejection method. Best (1983) extended the Ahrens & Dieter (1974) method, by adjust-
ing a switching point and introducing a squeeze technique. Devroye (1986) developed a
diferent rejection method, based on the exponential power distribution. As of 2024, it
is employed by a Python package, NumPy (Baumgarten & Patel, 2022). Using a general-
ized exponential distribution (Gupta & Kundu, 1999), Kundu & Gupta (2007) developed
a rejection method and its piecewise extensions. Finally, Tanizaki (2008) developed a
ratio-of-uniforms method, which works either for 0 < α < 1 and for 1 < α.

In this note, we propose eicient gamma generators for 0 < α < 1, advancing an
earlier study (Kundu & Gupta, 2007). In Section 2, we develop an acceptance-rejection
algorithm, using the generalized exponential distribution. In Section 3, we construct
fractional functions for the squeeze technique. In Section 4, we discuss piecewise enve-
lope functions. In Section 5, we evaluate the performance of the proposed and previous
methods. Section 6 contains discussions and the summary.

2 Base algorithm

We construct a base algorithm to generate a random variate drawn from the gamma
distribution with shape 0 < α < 1. We focus on the λ = 1 case, because we can obtain

1

the results for λ 6= 1, by multiplying the outputs by λ.

fGA(x;α, 1) =
1

Γ(α)
xα−1e−x (2)

In line of Kundu & Gupta (2007), we employ the generalized exponential (GE) distribu-
tion (Gupta & Kundu, 1999),

fGE(x;α, λ) =
α

λ
(1− e−x/λ)α−1e−x/λ (x ≥ 0) (3)

where α (> 0) and λ (> 0) are the shape and scale parameters. Note that Gupta & Kundu
(1999) and Kundu & Gupta (2007) use diferent conventions for the scale parameter, and
we employ Gupta & Kundu (1999)’s. The cumulative distribution function (CDF) of the
GE distribution is

FGE(x;α, λ) = (1− e−x/λ)α (4)

Hereafter we consider the GE distribution with λ = 1. We generate a uniform random
variate U1 in the (0, 1) range:

U1 ∼ U(0, 1) (5)

Equating U1 with (4) with λ = 1, we ind that a random variate x that follows the
generalized exponential distribution fGE(α,1) is drawn by

x← − log(1− U
1/α
1) (6)

To help our discussion, we use a parameter β, a function g(x), and a rejection function
R1(x).

β ≡ 1− α, g(x) ≡
1− e−x

x
(7)

R1(x) ≡

(

x

1− e−x

)α−1

= (g(x))β (8)

The function g(x) is continuous at x = 0. When x ≥ 0, as g(0) = 1 and g′(x) =
(1 + x− ex)/(x2ex) ≤ 0, we ind 0 < g(x) ≤ 1. Since 0 < β < 1, we ind

0 < R1(x) ≤ 1. (9)

All the equal signs are met when x = 0.
Comparing the GE (3) and gamma distributions (2), we rewrite (2) as follows.

fGA(x;α, 1) =
1

Γ(α + 1)
R1(x) fGE(x;α, 1) (10)

Here, the relation αΓ(α) = Γ(α + 1) is used. Eq. (10) suggests that we can apply a
rejection method to the GE-distributed variate x, to obtain a gamma-distributed variate.

2

Using another uniform variate U2 ∼ U(0, 1), we evaluate the acceptance condition:

U2 ≤ R1(x) (11)

or an equivalent inequality:

(U2)
1/(1−α)x ≤ U

1/α
1 (12)

If either (11) or (12) is satisied, then we take this number x. If it is not satisied, we
discard the number, and then we go back to the beginning. The inal output follows a
gamma distribution with shape α. These procedures are summarized in Algorithm 1 in
Table 1. We need the total density 1/Γ(α + 1) to generate one gamma distribution.

Table 1: A base algorithm of our generators for 0 < α < 1.
Algorithm 1

repeat

generate U1, U2 ∼ U(0, 1)

b← U
1/α
1 , x← − log(1− b)

if U
1/(1−α)
2 x ≤ b return x

end repeat

3 Squeeze technique

We improve the speed of the algorithm by the so-called squeeze method. We avoid the
power and exponential operations in the acceptance condition (11), by using the following
inequalities for x ≥ 0.

4− βx

4 + βx
≤ R1(x) ≤

4 + (1− β)x

4 + (1 + β)x
(13)

To show this, we start from several inequalities:

e−x ≥
2− x

2 + x
if x ≥ 0 (14)

xβ ≤
(1− β) + (1 + β)x

(1 + β) + (1− β)x
if 0 < x ≤ 1 and 0 ≤ β ≤ 1 (15)

xβ ≥
(1− β) + (1 + β)x

(1 + β) + (1− β)x
if x ≥ 1 and 0 ≤ β ≤ 1 (16)

xβ ≤ 1 + β(x− 1) if 0 < x and 0 ≤ β ≤ 1 (17)

3

We can prove them in the following way.

p(x) ≡
2− x

2 + x
ex which tells p(0) = 1, p′(x) =

−x2ex

(2 + x)2
< 0 (18)

q(x) ≡
(1− β) + (1 + β)x

(1 + β) + (1− β)x
x−β which tells q(1) = 1,

q′(x) =
β(β2 − 1)(1− x)2x−β−1

[(1 + β) + (1− β)x]2
≤ 0 (19)

r(x) ≡ −xβ + 1 + β(x− 1) which tells r(1) = 0,

r′(x) = β(1− xβ−1) < 0 for x < 1, r′(x) > 0 for x > 1 (20)

For the left inequality of (13), we diferentiate the rejection function

R′

1(x) = β

(

x− ex + 1

x(ex − 1)

)

R1(x) (21)

With help from the Taylor series ex =
∑

∞

n=0

xn

n!
, we ind

R′

1(x)

R1(x)
= −β

∑

∞

n=2

xn

n!

x
∑

∞

n=1

xn

n!

= −β

∑

∞

n=2

1

n

xn

(n− 1)!
∑

∞

n=2

xn

(n− 1)!

(22)

In the right-hand side, all the terms in the numerator and in the denominator are positive,
but the numerator terms contain additional factor of 1/2, 1/3, · · · . This indicates that
the ratio of the numerator to the denominator is less than 1/2. Together with the x = 0
case, we ind

R′

1(x)

R1(x)
≥ −

β

2
(23)

This suggests, together with (14),

R1(x) ≥ exp

(

−
β

2
x

)

≥
4− βx

4 + βx
. (24)

For the right inequality of (13), with help from (8), (14) and (15), we obtain

R1(x) ≤

(

2

2 + x

)β

≤
4 + (1− β)x

4 + (1 + β)x
(25)

Thus (24) and (25) prove (13).
In practice, we utilize the inequalities (13) or equivalent logical expressions, before

evaluating R1(x). Translating β → (1−α) again, we show the inal algorithm in Algorithm
2 (Table 2).

4

Table 2: A gamma generator with the squeeze technique.
Algorithm 2

repeat

generate U1, U2 ∼ U(0, 1)

b← U
1/α
1 , x← − log(1− b)

if U2(4 + (1− α)x) ≤ (4 + (α− 1)x) return x
if U2(4 + (2− α)x) ≤ (4 + αx) then

if U
1/(1−α)
2 x ≤ b return x

end repeat

4 Piecewise envelope functions

Next, we split the envelope function for the rejection method into two parts. Across
the switching point at x = s (> 0), we consider the GE distribution in the left and an
exponential tail in the right. With help from the CDF of the GE distribution (Eq. (4)),
we rewrite the gamma distribution (Eq. (2)) as follows.

fGA(x;α, 1) =







SL ·R1(x)
fGE(x;α, 1)

FGE(s;α, 1)
(for 0 ≤ x ≤ s)

SR ·R2(x) e
−(x−s) (for x > s)

(26)

Here, SL and SR are the densities of the left and right parts,

SL ≡
(1− e−s)α

Γ(α + 1)
, SR ≡

αe−ssα−1

Γ(α + 1)
, (27)

and R2(x) is the second rejection function

R2(x) ≡
(x

s

)α−1

(28)

which satisies 0 < R2(x) < 1 for x > s. Equation (26) tells us that we can apply the
rejection method to the GE distribution with R1(x) in the left part, and that we can
apply the rejection method to the exponential density with R2(x) in the right part.

Using a uniform variate U1, when U1 ≤ SL/(SL + SR), we proceed to the GE part.
We generate the GE-distributed number in the range [0, s]. Using a uniform variate U2,
the GE variate x can be drawn by

x← − log
(

1− [FGE(s;α, 1) U2]
1/α

)

(29)

Then we evaluate the acceptance condition, as discussed in Section 3.
In the right part, we obtain an exponential variate from U2,

x← s− logU2 (30)

and then we apply the rejection method. We can similarly apply the squeeze technique

5

to (28). For x ≥ 1, from (16) and (17), we obtain a squeeze relation

1

1 + β(x− 1)
≤ x−β ≤

(1 + β) + (1− β)x

(1− β) + (1 + β)x
(31)

Finally, we choose s. First, we look for s that minimizes the total density

S(α, s) = SL + SR =
(1− e−s)α + αsα−1e−s

Γ(α + 1)
. (32)

The solution can be found by solving (1 − e−s)α−1 + (α − 1)sα−2 − sα−1 = 0 by a root
inder. In this case, we ind an approximation by trial and error,

s∗ = 1.28 + 0.23α (33)

This gives a near-minimum S(α, s∗) within an error of < 1.5 × 10−6. Another choice is
s = 1, in analogy with Ahrens & Dieter (1974). This simpliies several parameters in the
algorithm.

These procedures are shown in Algorithm 3 (Table 3). The irst three lines initialize
coeicients, and then the lines inside the loop generate the variate. We reuse (SL +
SR)/SL ·U1 or (SL+SR)/SR · (U1−SL/(SL+SR)) as a uniform variate, in order to reduce
the total number of random variates. When s = 1, we can further simplify the code,
which is a trivial task.

Table 3: A method with the piecewise envelope functions.
Algorithm 3

s← 1.28 + 0.23α, t← exp(−s) // s = 1, t = 1/e
SL ← (1− t)α, SR ← α t sα−1, S ← SL + SR

p1 ← SL/S, d2 ← S/SR

repeat

generate U1, U2 ∼ U(0, 1)
if U1 ≤ p1 then

b← (SU1)
1/α, x← − log(1− b)

if U2(4 + (1− α)x) ≤ (4 + (α− 1)x) return x
if U2(4 + (2− α)x) ≤ (4 + αx) then

if U
1/(1−α)
2 x ≤ b return x

else

x← s− log d2(U1 − p1), y ← x/s
if U2(α + (α− 1)y) ≤ 1 return x
if U2(α + (2− α)y) ≤ (2− α + αy) then

if U2 ≤ yα−1 return x
endif

end repeat

5 Numerical tests

We have carried out several benchmark tests. We wrote C codes for the eight methods:
1) the Ahrens & Dieter (1974) method, 2) the Best (1983) method, 3) the Devroye

6

(1986) method, 4) the Kundu & Gupta (2007) method (Algorithm 3 in their paper), 5)
Algorithm 1 (Table 1), 6) Algorithm 2 (Table 2), 7) Algorithm 3 (Table 3) with s = s∗,
and 8) Algorithm 3 with s = 1. In the last case, we have simpliied the algorithm, as
mentioned in Sec. 4. We use a uniform random generator (gsl_rng_uniform) in the
GNU Scientiic Library. We use Intel oneAPI Compiler (icx) v2024.1 with the -lgsl

-O0 -lm option and the clang compiler (clang) v14.0 with the -lgsl -lm option on
AMD Ryzen 5955 processor on Ubuntu Linux 24.04.

0.0 0.2 0.4 0.6 0.8 1.0
Shape parameter

1.0

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 d
en

si
ty

Ahrens & Dieter 1974
Best 1983
Kundu & Gupta 2007
Algorithms 1, 2
Algorithm 3 (s=1)
Algorithm 3 (s=s*)

Figure 1: Normalized number densities to generate a gamma distribution. Theoretical
predictions (curves) and numerical results (circles) are shown, as a function of α.

Figure 1 shows the normalized number of random variates to generate a gamma
distribution, as a function of α. The curves indicate theoretical predictions. Algorithms 1
& 2 require 1/Γ(α+1), the same number as the most eicient method to date, the Devroye
(1986) method (not shown). Algorithm 3’s number is given by (32). The circles indicate
our Monte Carlo results for eleven shape parameters, α = 0.01, 0.1, 0.2, 0.3, · · · 0.9, 0.99.
In each case, 108 random numbers are generated. They are in excellent agreement with
the theories. The proposed methods, Algorithm 3 in particular, need fewer random
numbers than most of the other algorithms. The s = s∗ case is better than the s = 1
case by . 0.8%.

Next we compare the speed of the algorithms. Considering practical applications,
two settings are considered (Tanizaki, 2008). In the irst setting, we repeatedly draw
one random variate 108 times for all 11 parameters. We measure the elapsed time in
seconds three times per method, and then take the average elapsed time. Figure 2(a)

7

(b)(a)

Figure 2: (a) Elapsed time to generate 108 gamma variates, including the parameter
initialization. (b) Elapsed time to generate 108 gamma variates all at once. See the main
text for detail.

shows the results. The Devroye (1986) method and Algorithm 2 are the fastest. They
outperform the well established methods (Ahrens & Dieter, 1974; Best, 1983). Although
the two compilers give diferent results, from Algorithms 1 and 2, we see that the squeeze
technique is efective. Note that the Kundu & Gupta (2007) method does not use the
squeeze technique.

In the second setting, we draw 108 random variates all at once, and then repeat this
procedure for the 11 parameters. Some algorithms initialize internal parameters, before
generating many random variates. For example, in Algorithm 3, the irst three lines in
Table 3 are used only once per parameter, before generating many variates at once. These
lines are repeated each time we draw a variate in the irst setting. Figure 2(b) shows the
elapsed times. For reference, results with high-level compiler optimizations (the -O2

option) are also displayed. Now the piecewise algorithms such as the Best (1983) method
and Algorithm 3 become faster than in Fig. 2(a), suggesting that they are fast, once the
parameters are initialized. Together with the Best (1983) method and the Devroye (1986)
method, Algorithms 2–3 are close and promising. In Algorithm 3, the s = 1 cases are
always faster than the s = s∗ cases.

6 Discussion and Summary

We have developed the rejection algorithms to generate a gamma variate with the shape
parameter 0 < α < 1. In line of Kundu & Gupta (2007), we have employed the GE
distribution (Gupta & Kundu, 1999). The GE distribution is useful, because it resembles
the gamma distribution, and because its CDF has a simple form. Kundu & Gupta (2007)
employed the GE distribution with the scale parameter 2, that is, fGE(x;α, 2), while
we employ the scale parameter 1, fGE(x;α, 1), to obtain better acceptance eiciency.
Therefore, the parameters and the rejection function in their study are diferent from
ours. Despite a diferent strategy, our acceptance eiciency is as good as the best one
(Devroye, 1986).

To improve the performance, we have constructed the squeeze functions in (13). As
demonstrated, this makes the code faster. One may notice that the left-hand side (the

8

lower bound) can be negative for x > 4/β, but logically there is no problem. In addition,
since FGE(4/β;α, 1) ≥ FGE(4;α, 1) = (1− e−4)α & 0.982, more than 98% of the random
numbers are found for x < 4/β, where the lower bound condition is useful.

We have considered piecewise extensions of our algorithms, with an exponential tail
(Ahrens & Dieter, 1974; Best, 1983; Kundu & Gupta, 2007). This makes the acceptance
eiciency even better. The squeeze functions are presented in (31). The left inequality
(the lower bound) is identical to one in the Best (1983) method, while the right one (the
upper bound) is a new addition. This addition actually makes the Best (1983) method
few percents faster (not shown). As for Algorithm 3, despite the near-optimum density
S(α, s∗) < S(α, 1), the s = 1 case is always faster than the s = s∗ case, because s = 1
simpliies the algorithm. Therefore s = 1 is our choice. In the second setting (Fig. 2(b)),
Algorithm 3 with s = 1 is always faster than Algorithm 2, owing to its good acceptance
rate. It is promising when drawing many variates at once. In the irst setting (Fig. 2(a)),
in agreement with Tanizaki (2008), several methods become slower due to the parameter
initialization. This is also the case for Algorithm 3. In contrast, Algorithm 2 remains
fast in the irst and second settings, because of its simplicity.

Considering several aspects, we conclude that Algorithm 2 is one of the best two
generators, together with the Devroye (1986) method. These two often outperform the
others, including the well established methods (Ahrens & Dieter, 1974; Best, 1983). With
Intel compiler, Algorithm 2 is the best, and the Devroye (1986) method is the best with
clang. The proposed methods are simple enough, and easy to implement, as shown in
Tables 1–3. In addition to the compiler-dependence, there can be a CPU-dependence
(and possibly a GPU-dependence). Considering various runtime environments, we want
to have as many good algorithms as possible, and ours are certainly one of them.

In summary, we have developed gamma variate generators for 0 < α < 1, using
the GE distribution, the squeeze technique, and the piecewise envelope functions. The
proposed methods are excellent in acceptance eiciency. The numerical tests suggest that
Algorithm 2 is one of the best two generators for 0 < α < 1. Algorithm 3 with s = 1
can be a good option when drawing many variates at once. We hope that the proposed
methods are useful in practical applications.

Data Availability

Program codes in C language are available from the author upon request.

9

References

Ahrens, J. H. and Dieter, U. (1974), ǳComputer Methods for Sampling from Gamma,
Beta, Poisson and Binomial Distributions,Ǵ Computing 12, 223–246

Baumgarten C, and Patel, T. (2022), ǳAutomatic random variate generation in Python,Ǵ
Proc. of the 21st Python in Science Conf. (SCIPY 2022), 46–51

Best, D. J. (1983), ǳA Note on Gamma Variate Generators with Shape Parameter less
than Unity,Ǵ Computing 30, 185–188

Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer-Verlag, Chap.
VII, Sec. 2.6, p. 304

Gupta, R. D. and Kundu, D. (1999), ǳGeneralized exponential distributions,Ǵ Australian
and New Zealand Journal of Statistics 41, 173–188

Kroese, D. P., Taimre, T., and Botev, Z. I. (2011), Handbook of Monte Carlo methods,
John Wiley & Sons.

Kundu, D. and Gupta, R. D. (2007), ǳA convenient way of generating gamma random
variables using generalized exponential distribution,Ǵ Computing Statistics & Data
Analysis 51, 2796–2802

Marsaglia, G. and Tsang, W. W. (2000), ǳA Simple Method for Generating Gamma
Variables,Ǵ ACM Transactions on Mathematical Software 26, 363–372

Tanizaki, H. (2008), ǳA Simple Gamma Random Number Generator for Arbitrary Shape
Parameters,Ǵ Economics Bulletin 3, 1–10

Yotsuji, T. (2010), Random number generation of probability distributions for computer
simulations, Pleiades Publishing, Nagano

10

