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Abstract
This study examines how the long-run growth rate of per capita income is determined when population growth is

negative. It uses the augmented Solow growth model as a tool for this investigation. The results reveal four distinct

types of dynamics, depending on the parameter combinations. In all these dynamics, the long-run growth rate of per

capita income remains positive. This finding implies that sustainable growth in per capita income is achievable, even in

the context of negative population growth.
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1 Introduction

The phenomenon of population decline is becoming a global issue. Countries such

as Germany and Italy have already experienced this decline, and Japan has been

witnessing a continuous decrease in population since 2010. The United Nations World

Population Prospects 2019 indicates that high-income economies, as classified by the

World Bank, are projected to see a population decline post-2050, and middle-income

economies are expected to follow suit after 2075. Given these circumstances, there is

a growing emergence of economic growth models that take into account population

decline.

Christiaans (2011) develops a Solow model that incorporates increasing returns to

scale due to a positive externality with capital accumulation, showing that the long-run

growth rate of per capita income can remain positive, even if the population growth rate

is negative. This result is possible because the effect of capital deepening becomes more

powerful when the absolute value of the population decline rate is sufficiently large.

Sasaki and Hoshida (2017) apply an R&D growth model, following the approach of

Jones (1995), and consider negative population growth. They discover that while R&D

activities may stagnate as the population decreases, the effect of capital deepening

intensifies, leading to positive growth in per capita income.1 In these models, when

the rate of population decline is high, the capital stock per effective labor continues

to rise, meaning capital deepening occurs. Consequently, the balanced growth path

(BGP) typically seen in growth models does not exist. However, owing to decreasing

returns in relation to capital in the production function, the growth rate of capital

stock per effective labor decreases and converges to a positive value. Consequently,

the growth rate of per capita income also converges to a positive value. This is a

growth path specific to a negative population growth economy.

The aforementioned studies consider the accumulation of physical capital and en-

dogenous technological progress, but do not consider the accumulation of human cap-

ital. Elgin and Tumen (2012) and Bucci (2023) incorporate a Lucas (1988) style of

human capital accumulation into a continuous time growth model. Both studies con-

clude that, under certain conditions, the long-run per capita income growth rate can

be positive even if the population growth rate is negative..

The two studies mentioned above focus their analysis on the BGP, where the pri-

mary variables in models consistently increase at a uniform constant growth rate. Con-

1Jones (2022) presents an R&D growth model that endogenizes the population growth rate, but
omits capital accumulation. He shows that when population growth is negative, sustained growth of
per capita income is unattainable because R&D activities stagnate.



sequently, along the BGP, ratios of variables such as the output-capital ratio or capital

stock per effective labor remain constant. In contrast, Christiaans (2011) and Sasaki

and Hoshida (2017) direct their analysis toward the Negative Population Growth Path

(NPGP), where the output-capital ratio converges to zero and capital stock per effec-

tive labor becomes infinite in the long run.

Drawing from the above observations, we apply the augmented Solow growth model

by Mankiw, Romer, and Weil (1992), which considers the accumulation of human

capital. Similarly to the approaches of Christiaans (2011) and Sasaki and Hoshida

(2017), we explore a growth path that is specific to an economy experiencing negative

population growth. We then explain the relationship between the rate of population

decline and the growth rate of per capita income.

2 Model

The model aligns with the one presented by Mankiw, Romer, and Weil (1992). The

production of final goods involves physical capital K, human capital H, and labor

L. The production function adopts the Cobb–Douglas form, which exhibits constant

returns to scale: Y = KαHβ(AL)1−α−β, α ∈ (0, 1), β ∈ (0, 1), α + β ∈ (0, 1) =⇒

y = kαhβ, where Y denotes output; A is the index of labor-augmenting technological

progress; α is the output-elasticity of physical capital; and β is the output-elasticity

of human capital. All parameters are larger than zero and less than unity. We define

y = Y/(AL), k = K/(AL), and h = H/(AL).

Let the population growth rate and labor-augmenting progress rate be n and g,

respectively. We assume that L̇/L = n < 0 and Ȧ/A = g > 0. Both growth rates are

assumed to be constant. The population growth rate is negative.

Let the investment rate of physical capital and that of human capital be sk ∈ (0, 1)

and sh ∈ (0, 1), respectively. Suppose that sk and sh are constant fractions of total

output. Then, the dynamical equations of physical capital and human capital are

respectively given by K̇ = skY − δkK and Ḣ = shY − δhH, where δk ∈ (0, 1) and

δh ∈ (0, 1) are the depreciation rates of physical and human capital, respectively.2

2There are some empirical studies that estimate the depreciation rate of human capital. Using
data of U.K. and Netherlands, Groot (1998) estimates it as 11–17% per year. Arrazola, Risueno,
and Sanz (2005) consider EU economy and reveal that the depreciation rates of human capital differ
for those who are unemployed and for those who are employed during the coverage period. The
depreciation rate for the unemployed is 2.3% per year while that for the employed is 1.4% per year.
Dinerstein, Megalokonomou, and Yannelis (2022) find that the depreciation rate of skill in Greece is
4.3% per year. From these studies, the depreciation rate of human capital is 1.4–17% per year. By
contrast, the depreciation rate of physical capital is usually 3–7% per year. Accordingly, we cannot



Summarizing the above equations, the dynamical equations of k and h are as

follows: k̇ = skkαhβ
−(n+g+δk)k and ḣ = shkαhβ

−(n+g+δh)h. When n+g+δk < 0

or n + g + δh < 0 holds, for k > 0 and h > 0, we have k̇ > 0 or ḣ > 0, which suggests

that k or h continues to increase. In this case, the usual steady states of k and h do

not exist, because k̇ = 0 or ḣ = 0 is never obtained, and we obtain the growth path

specific to an NPGP.

The growth rates of k and h are given by

k̇

k
= sk

hβ

k1−α
− (n + g + δk), (1)

ḣ

h
= sh

kα

h1−β
− (n + g + δh). (2)

The growth rate of per capita income gY/L is the sum of the growth rate of y and

that of A, given by

gY/L = g + α

[

sk
hβ

k1−α
− (n + g + δk)

]

+ β

[

sh
kα

h1−β
− (n + g + δh)

]

︸ ︷︷ ︸

≡gy

. (3)

When n + g + δk < 0 or n + g + δh < 0, we cannot use the usual phase diagram

analysis, as employed in Mankiw, Romer, and Weil (1992), because we cannot obtain

k̇ = 0 or ḣ = 0. Therefore, considering equations (1) and (2), we introduce the follow-

ing new state variables: x ≡ hβ/k1−α and z ≡ kα/h1−β. The differential equations of

the newly introduced state variables are given by

ẋ = x[−(1 − α)skx + βshz + C1], C1 = (1 − α)(n + g + δk) − β(n + g + δh), (4)

ż = z[αskx − (1 − β)shz + C2], C2 = (1 − β)(n + g + δh) − α(n + g + δk). (5)

The parameters C1 and C2 can be positive or negative, and the size relationship be-

tween them is ambiguous. Substituting x and z into equation (3), we obtain

gY/L = g + α [skx − (n + g + δk)] + β [shz − (n + g + δh)] . (6)

To draw the phase diagram of (x, z), we find the loci of ẋ = 0 and ż = 0:

ẋ = 0 =⇒ z =
sk

sh

·
1 − α

β
x −

C1

βsh

, (7)

say which is larger, δk or δh.



ż = 0 =⇒ z =
sk

sh

·
α

1 − β
x +

C2

(1 − β)sh

. (8)

The slopes of ẋ = 0 and ż = 0 are positive. For the size relationship between them,

we obtain

sk

sh

·
1 − α

β
−

sk

sh

·
α

1 − β
=

sk

sh

·
1 − α − β

β(1 − β)
> 0. (9)

Hence, the slope of ẋ = 0 is steeper than that of ż = 0.

The intercepts of ẋ = 0 and ż = 0 can be positive or negative. For the size

relationship between them, we obtain

−
C1

βsh

−
C2

(1 − β)sh

= −
1

sh

·
(1 − β)C1 + βC2

β(1 − β)

= −
1

sh

·
(1 − α − β)(n + g + δk)

β(1 − β)
. (10)

Hence, this sign depends on whether n + g + δk > 0 or n + g + δk < 0.

3 Analysis

We obtain four outcomes, depending on the combination of the signs of n + g + δk and

n + g + δh.3

3.1 Case 1: n + g + δk > 0 and n + g + δh > 0

We define Case 1 as a case in which n < 0 but its absolute value is relatively small;

hence, both n + g + δk > 0 and n + g + δh > 0 hold. Case 1 is compatible with δk < δh

or δk > δh. Case 1 is the same as the case examined by Mankiw, Romer, and Weil

(1992).

In Case 1, C1 and C2 can be positive or negative. Possible combinations are (a)

C1 > 0, C2 > 0, and C1 < C2 (δk < δh), (b) C1 < 0 and C2 > 0 (δk < δh), (c)

C1 > 0, C2 > 0, and C1 > C2 (δk > δh), and (d) C1 > 0 and C2 < 0 (δk > δh).4 Phase

diagrames are shown in Figures 1–3.

3If we assume δk = δh as Mankiw, Romer, and Weil (1992), we obtain n + g + δk = n + g + δh,
which leads to C1 = C2. When C1 = C2 > 0, we obtain Cases 1-(a) and 1-(c). When C1 = C2 < 0,
we obtain Cases 4-(b) and 4-(d). When δk = δh, we cannot obtain Cases 2 and 3.

4We cannot have C1 < 0 and C2 < 0 because α + β < 1.



x

z

O x
∗

z
∗

E1
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Figure 3: Phase diagram in
Case 1-(d)

In all cases, ẋ = 0 and ż = 0 have an intersection, which gives the steady state in

Case 1, E1:

x∗ =
n + g + δk

sk

> 0, z∗ =
n + g + δh

sh

> 0. (11)

From Figures 1–3, the steady state is stable. The long-run growth rate of per capita

income g∗

Y/L is equal to the labor augmenting technological progress rate:

g∗

Y/L = g > 0. (12)

3.2 Case 2: n + g + δk < 0 and n + g + δh > 0

We define Case 2 as a case in which n < 0 and its absolute value is relatively large;

hence, both n+g +δk < 0 and n+g +δh > 0 hold.5 Case 2 is compatible with δk < δh.

In Case 2, we have C1 < 0 and C2 > 0. Hence, the intercept of ẋ = 0 and that of

ż = 0 are positive. Since n + g + δk < 0 in Case 2, the sign of the RHS of equation

(10) is positive. This means that the intercept of ẋ = 0 is larger than that of ż = 0.

Hence, the phase diagram is shown in Figure 4.

5If g = 0.01 and δk = 0.03, n must be smaller than −4% to satisfy the condition n + g + δk < 0.
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From Figure 4, the economy converges to the corner solution E2, and the long-run

situations are as follows:

x∗ = 0, z∗ =

≡C2>0
︷ ︸︸ ︷

(1 − β)(n + g + δh) − α(n + g + δk)

(1 − β)sh

> 0. (13)

From equation (6), the long-run growth rate of per capita output is given by

g∗

Y/L = g −
α

1 − β
(n + g + δk)
︸ ︷︷ ︸

−

> 0. (14)

3.3 Case 3: n + g + δk > 0 and n + g + δh < 0

We define Case 3 as a case in which n < 0 and its absolute value is relatively large;

hence, both n + g + δk > 0 and n + g + δh < 0 hold. Case 3 is compatible with δk > δh.

In Case 3, we have C1 > 0 and C2 < 0. Hence, the intercept of ẋ = 0 and that of

ż = 0 are negative. The difference of the intercepts is given by equation (10). Since

n + g + δk > 0 in Case 3, the sign of the RHS of equation (10) is negative. This means

that the intercept of ẋ = 0 is smaller than that of ż = 0. Hence, the phase diagram is

shown in Figure 5.
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From Figure 5, the economy converges to the corner solution E3, and the long-run

situations are as follows:

x∗ =

≡C1>0
︷ ︸︸ ︷

(1 − α)(n + g + δk) − β(n + g + δh)

(1 − α)sk

, z∗ = 0. (15)

From equation (6), the long-run growth rate of per capita income is given by

g∗

Y/L = g −
β

1 − α
(n + g + δh)
︸ ︷︷ ︸

−

> 0. (16)

3.4 Case 4: n + g + δk < 0 and n + g + δh < 0

We define Case 4 as a case in which n < 0 and its absolute value is extremely large;

hence, both n + g + δk < 0 and n + g + δh < 0 hold. Case 4 is compatible with δk < δh

or δk > δh. In Case 4, C1 and C2 can be positive or negative. Possible combinations

are (a) C1 < 0, C2 > 0 (δk < δh), (b) C1 < 0, C2 < 0, and C1 < C2 (δk < δh), (c)

C1 > 0 and C2 < 0 (δk > δh), and (d) C1 < 0, C2 < 0, and C1 > C2 (δk > δh).6

In Cases 4-(b) and 4-(d), we obtain Figure 6.

6We cannot have C1 > 0, C2 > 0, and C1 < C2 (δk < δh) or C1 > 0, C2 > 0, and C1 > C2

(δk > δh) because α + β < 1.
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From Figure 6, we find that the economy converges to the origin, E4, and the

long-run situations are as follows:

x∗ = z∗ = 0. (17)

From equation (6), the long-run growth rate of per capita output is given by

g∗

Y/L = g − α (n + g + δk)
︸ ︷︷ ︸

−

−β (n + g + δh)
︸ ︷︷ ︸

−

> 0. (18)

In Case 4-(a), we obtain Figure 4. This case is essentially identical with Case 2.

Hence, the long-run growth rate of per capita income g∗

Y/L in Case 4-(a) is given by

equation (14), which is positive.

In Case 4-(c), we obtain Figure 5. This case is essentially identical with Case 3.

Hence, the long-run growth rate of per capita income g∗

Y/L in Case 4-(c) is given by

equation (16), which is positive.

4 Conclusion

This study examines the issue of a decreasing population within the context of the

augmented Solow growth model by Mankiw, Romer, and Weil (1992), which incor-

porates human capital accumulation. The study investigates whether the long-run

growth rate of per capita income remains positive when the population growth rate is

negative. The analysis reveals four potential scenarios based on the parameter sizes.

In each scenario, the long-run growth rate of per capita income is positive.
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