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Abstract

The first order approach to solving the standard one-dimensional principal-agent model is conditional upon the relevant
stochastic production function obeying two noteworthy restrictions: that the Likelihood Ratio be monotonically
increasing in output, and that the distribution function be convex in effort. It is usually claimed that such conditions are
very restrictive, as very few of the standard probability distributions satisfy both properties. The purpose of this note is
to show that some simple transformations or parametrizations are available, that enable one to work out convenient
distributions with the required properties
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1 Introduction

The aim of this note is to provide a user-friendly methodology to apply the
so-called First Order Approach (FOA) for the solution of the one-dimensional
principal-agent model with unobservable effort.

The key characteristics of this model is that the outcome (output) of the
bilateral contract between the principal and the agent is a stochastic variable,
the distribution of which depends on the unobservable effort provided by
the agent. In this setup, the optimal contract, which specifies an output-
contingent wage schedule, implements the effort desired by the principal only
if an incentive compatibility constraint is satisfied, ensuring that such an
effort is actually provided by the agent.

The FOA tackles this problem by embodying the first order conditions
of the agent’s maximization problem with respect to effort as the incentive
compatibility constraint. It is well known that a sufficient condition for this
strategy to properly identify the optimal contract is that the stochastic pro-
duction function obeys two noteworthy restrictions: the Monotone Likelihood
Ratio Property, and that the distribution function be convex in effort.

While some probability distributions are available which satisfy both con-
ditions, it is usually claimed that the latter are indeed very restrictive, as
standard probability distributions, like the Normal, Beta, Chi square, F,
Weibull, etc., do not in fact satisfy the above properties (e.g., Jewitt, 1988;
LiCalzi and Spaeter, 2003).

We show that some simple transformations are available, which allow
to work with suitably parametrized standard distributions, in such a way
that some key and desirable properties of the latter (e.g., unimodality) are
preserved, and made consistent with those required by the application of the
FOA methodology.

The note is organized as follows. In Section 2 we describe the standard
setup of a principal-agent model with unobservable effort, and we outline the
FOA approach. In Section 3 we suggest a user-friendly procedure to generate
probability distributions satisfying the conditions for its application. Section
4 concludes.



2 The basic model

The standard formulation of the continuous principal-agent model with sep-
arable utility! takes the general form

(%/]gf/v%—wbrgfbr,atgﬁ (L.a)
subject to
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where = denotes output, whr9 the agent’s compensation and a effort; v b9
and u b9are respectively the principal’s and the agent’s Bernoulli utility func-
tions, while ckn9 denotes the agent’s disutility of effort, which is assumed to
be increasing and convex. It is usually assumed that v and u are both increas-
ing concave functions, with u strictly concave. In equation (1.b) u denotes
the agent’s reservation utility. Output is a stochastic variable, distributed
according to the density function fbr, a9

Letting subscripts denote derivatives, fbr,a9 D F,br,a9 is the strictly
positive density of

Fd¥ xA—+d &

which gives the parametrized distribution Fhr, a9 of observable (and veri-
fiable) output x € X, given the agent’s hidden action a € AC Rs. It is
standardly assumed that the support X is a compact interval independent
of a; that F'is continuously differentiable at least twice; and that the agent’s
effort exerts a positive effect on output in the sense of first order stochastic
dominance, that is

Fobr,a9< " (2)

for all a € A.2

Problem (1) embodies the idea of the principal maximizing her utility
subject to the agent’s participation (1.b) and incentive compatibility (1.c)
constraints. It is well known that in the above formulation the problem turns

'Non separable utility is much harder to work with. An extension of the FOA to the
nonseparable utility case is provided by Alvi (1997).

2The set A is sometimes assumed to be an open interval, so as to characterize optima
by interior maxima (e.g., Jewitt, 1988, p.1179)



out to be analytically unmanageable (e.g. Laffont and Martimort, 2002,
p.197), and that a possible way out is to invoke the so-called First Order
Approach (Mirrlees, 1975; Holmstrom,1979).3 This amounts to substituting
constraint (1.c) by:

/ububr%fab:c,at%x—cabat9D ) (3)
I

i.e., by the requirement that a' satisfies the first order conditions of the
agent’s expected utility maximization.

The related literature (e.g. Holmstrém,1979; Rogerson, 1985) has estab-
lished that the FOA, by relying upon necessary and not sufficient conditions,
cannot clearly be valid in general; but it is so if the following twin conditions
are satisfied

F,.br,a9
o br, a9

“forallz e X (4.a)

>
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Condition (4.a) is usually known as the CDF property (effort-Convexity of
the Distribution Function), while (4.b) is known as the MRLP (Monotone
Likelihood Ratio Property), where

fabr, a9

ahbr,a9D Fbr.a9

is the likelihood ratio, assumed to be monotonically increasing in x.

While the MRLP is generally looked at as a non-controversial assumption,
which also ensures that in the optimal contract the agent’s compensation is
increasing in output, the CDF is usually considered very much restrictive.
Indeed, though one reasonable implication of the CDF is that of decreasing
marginal (expected) productivity of effort,* very few distributions seem to
share this property.®

Examples of distributions satisfying MLRP and CDF are F br,a9D z*
(Rogerson, 1985), or F br,a9D ae-es (Laffont and Martimort, 2002) — which

3 Approaches not relying on FOA are provided by Grossman and Hart (1983) and Araujo
and Moreira (2001); see also Chaigneau et al. (2019). This note is concerned with the one-
dimensional problem; sufficient conditions for the FOA to be valid in a multidimensional
setting are discussed among others by Kirkegaard (2017).

4Chaigneau et al. (2019) argue that increasing marginal productivity might be a more
realistic alternative.

A property which moreover does have one disturbing feature highlighted by Jewitt
(1988, p.1177): in the simple linear case where realized output is x = a+¢, effort convexity
implies a monotonic density.



however imply monotone densities. Other cases are discussed by LiCalzi and
Spaeter (2003), who identify two classes of densities obeying MLRP and
CDF, one of which allows for non monotone densities. Among the distri-
butions yielding unimodal densities, one could also enlist the Burr type-X
distribution (e.g., Johnson et al.,1994, p.54)

Fbr,a9D (ae— er")“

defined for # > " and unimodal for all a > &Q which obeys the required
properties.

The above examples show that the search for suitable distributions can be
fruitful and enlarge the scope of application of the FOA methodology. How-
ever, in this note we suggest a different approach. We start from commonly
used distributions, e.g. the Normal, Beta, Gamma, etc, the parameters of
which cannot be related to effort in a such a way as to satisfy both MLRP
and CDF. We then apply to these distributions simple transformations in-
volving an effort variable, through which the FOA conditions are met while
preserving some of their desirable features. In other words we show that
there exist mappings which, starting from some given distribution, may help
building one satisfying both the MRLP and the CDF, while retaining some
properties of the original one (like unimodality) which may be relevant in a
variety of environments.

3 Useful transformations for the First Order
Approach

The basic idea relies on modelling the relationship between output and ef-
fort by appropriately parametrizing in terms of effort some "core" output
distribution Gbhr9dX — &' a&. If one lets ¢ d&’, a8 x A— &' &, any given a
induces a distribution F such that F' dX x A — &, &

Fbr,a9D ¢ bGhbr9 a9
The following can then be established:

Proposition Let ¢ have the following properties for all x € X and a € A:

(i) b’ a9D ", pkeea9dD @ (ii) wab,a9> " (iii) 22 > 7 (iv) o>
Then F' is a distribution obeying both the MRLP and tﬁe CDF property.

Proof Conditions (i) and (i) ensure that F' is a distribution, while condi-
tions (717) and (iv) ensure that F' satisfies the MRLP and the CDF property.ll



Through this Proposition, we suggest that it is possible to associate the effort
variable a to any "core" distribution G, in such a way that F' is endowed with
the required features, while some relevant properties of GG carry over to F.
In this sense, our suggestion is to move from the search of distributions sat-
isfying the MRLP and CDF property, to the search for suitable convexifying
transformations of any distribution G.

In the sequel we show how the separation between the distribution G and
the effort variable a allows a straightforward representation of the way in
which effort affects the output distribution. To this end, we present three
examples:

Example 1 One natural example is the power function. Take any distri-
bution G dX— ®°, & then if one defines Fbr,a9D Ghe?™° F is a proper
distribution which satisfies both the CDF and the MRLP for any (weakly)
concave positive A function increasing in a.° An instance where the "core"
distribution G is the quadratic Beta distribution and A9 D « is given in
Fig. 1; Fig.2 presents the same core density with Au9D /a, in both cases
with @ D @(thick), a D O(thin) and a D ) (dashed).
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Fig. 1: Beta density with Abu9D «a Fig.2: Beta density with Am9D /a
Example 2 Consider the formulation:

Fhr,a9D GhyQTor® #\ms (5)

6Indeed, it is readily seen that F,,(z,a) = G(z)* {()\a InG(2))? + Aga In G(x)} > 0 for
all positive z, while the likelihood ratio is a(z,a) = A\, /A+Aq In G(x), obviously increasing
in z. As is well known, Rogerson (1985, p.1362) presents as an example the distribution
F(z,a) = z® (in our notation), which in fact can be looked as the specific case where
A (a) = a, and the distribution being exponentially effort-parametrized is uniform (see also
LiCalzi and Spaeter, 2003, p.169). One should notice that some lower bound to a(z,a)
should be imposed, which is not considered here as lim,_,o a(z,a) = —co. In Rogerson’s
original formulation this issue does not arise as he is using a discrete distribution. See
Gutierrez (2012) for a discussion of this boundary requirement.



where again ) is an increasing weakly concave function of a, and again G d
X— d' & is any distribution. It is easily seen that F satisfies both CDF and
MLRP,” and we present in Fig.s 3 and 4 the densities obtained when Ghbr9
is again the quadratic Beta distribution, with Ab9D a and Am9D +/a; we
plot these for a D ™ (thick), a D @(thin) and a D O(dashed).
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Fig,3: Beta density with Alu9D «a Fig.4: Beta density with Abu9D /a

It may be worth noting that LiCalzi and Spaeter (2003, p.171) identify an
example such that Fhr, a9D ze™P® which, given X D ', &, can be seen as
a parametrization of Gbr9D x, the uniform distribution, with Abu9D a and
A D Rss . This yields a monotone density,® but a different choice of G would
deliver unimodality.

Example 3 Another example is given by the following parametrization. Take
again any G dX— 5 & and define

Gheo
Fbr,a9D & —%

a— &

(6)

for A D keecc9 One can check that F,,br,a9is positive for all x € X and
a > aand the likelihood ratio is increasing in 2.° Also in this case we present

"Indeed, F,q(z,a) = G(z) [G(x) — 1] el6@ UM [G(z) — 1] A2 + Ay, which is positive
for any positive z, while a(z,a) = {G(z) — 1+ G(z)/[1 + G(z)A(a)]} A, increasing in z.

8LiCalzi and Spaeter (2003, p.171) discuss this case within the class considered in their
Proposition 2: any distribution of the form F(z,a) = §(z)e?®7(@) satisfies both CDF
and MLRP, provided the functions 3, v, and § obey the restrictions these authors impose.
Suitable specifications of these function can ensure the existence of a mode.

9Indeed, F,, = (aG*QGZ(:c) (a—1)* = (3a — 1) a®@=2G(z) (a — 1) + 2 (aC@) — 1)) /(a—1)%>
0 for @ > 1, while o = {(Ina)a(G(z) = 1) —1+a—G(z)Ina} /((a—1)(Ina)a), obvi-
ousy increasing in z.



an example, where the basic Ghr9 distribution is the Cauchy distribution
normalized over the unit interval, with @ D &(thick), a D O(thin) and a D)
(dashed).

Fig.5: Cauchy density

One can observe that all the above cases a ‘neutral’ effort level @ can be
identified (given as a thick density in the numerical examples), which gives
back the core distribution G (which of course will not in general satisy CDF
and MRLP).! This may be conveniently seen as the minimum effort level:
in our examples, minimum effort in this sense implies an output distribution
symmetric around & Owith mean output independent of effort, while higher-
than-minimum effort distorts GG in the desired way.

4 Concluding remarks

The twin conditions of Monotone Likelihood Ratio Property and Convexity
of the Distribution are often claimed to be too stringent for the First Order
Approach to the solution of the standard principal-agent problem to be viable
in many applications, as most distributions currently in use do not satisfy
them. In this short note we have shown that simple mappings are available,
which allow one to work with suitably transformed standard distributions.
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