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Abstract
The analysis of matrix-valued time series has been popular in recent years. When the dimensions of the matrix

observations are large, one can use the matrix-valued factor model to extract information from the data. However, as

in standard factor analysis, the common factors and factor loadings are not separately identifiable. This note considers

two sets of identification restrictions that help exactly identify the model.
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1 Introduction

Recent years have witnessed an increasing availability of matrix-valued time series. Examples

include bilateral data like input-out tables and social networking data, or extended panel data

consisting of multiple countries and measurements. In contrast to a typical vector-valued vari-

able, there are two cross-sectional dimensions. Intuitively, variables in the same row or column

of Xt usually share more commonality than those in different rows and columns. To capture

this special factor structure, we consider the matrix-valued factor model, which takes the form

Xt “ RFtC
1 ` Et, t “ 1, . . . , T. (1)

MVFM is an extension to the approximate factor model, which has become one of the main

workhorses in empirical finance and macroeconometrics since its introduction by Chamberlain

and Rothschild (1983). Assuming all dynamics of the observed variables are captured by the

factors, Wang, Liu, and Chen (2019) and Chen, Tsay, and Chen (2020) extend the factor model

to incorporate matrix-valued time series. Chen, Yang, and Zhang (2022) further allow multi-

dimensional observations. Assuming a strong factor structure as in Bai and Ng (2002) and

Stock and Watson (2002a,b), Chen and Fan (2021) propose an estimation procedure called

α-PCA and show its consistency and asymptotic normality.

However, as in standard factor models, the latent factors and factor loadings are not sep-

arately identifiable. The aforementioned estimators are only consistent up to some unknown

rotations. This makes interpretation of the factors and structural analysis difficult. For this

purpose, one may impose identification restrictions on the model. This note provides the theo-

retical justification for this. This note extends two sets of identification restriction proposed by

Bai and Ng (2013) to the context of MVMF. We show that under the studied restrictions, the

common factors and factor loadings can be consistently estimated without any rotations.

2 Model and estimation

This paper considers the MVFV

Xt “ RFtC
1 ` Et, t “ 1, . . . , T.

Here Xt is an NR ˆ NC matrix of observed data; R “ pr1 ¨ ¨ ¨ rNR
q1 and C “ pc1 ¨ ¨ ¨ cNC

q1

are respectively an NR ˆ KR and an NC ˆ KC matrix of the row and column loadings; Ft is

a KR ˆ KC matrix of the latent factors; and Et is an NR ˆ NC matrix of idiosyncratic error

terms.

To estimate the model, Chen and Fan (2021) propose an estimation procedure called α-



PCA, which is an extension of the popular principle component analysis method. Let rα “
?

α ` 1 ´ 1 and rXt “ Xt ` rαXt, we define the image covariance matrices

rGR “ pNRNCT q´1

Tÿ

t“1

rXt
rX1

t and rGC “ pNRNCT q´1

Tÿ

t“1

rX1
t
rXt.

The row and column projection matrices are given by
?

NR times the eigenvectors correspond-

ing to the KR largest eigenvalues of rGR and
?

NC times the eigenvectors corresponding to

the KC largest eigenvalues of rGC respectively, denoted by rR and rC. Finally, the matrix of

common factors Ft is computed as

rFt “ N´1

R N´1

C
rR1Xt

rC, t “ 1, . . . , T. (2)

To get rid of the hyperparameter, we will set α “ 0 throughout this note. This method is then

equivalent to 2DSVD of Ding and Ye (2005).

3 Factor identification

As in conventional factor analysis, the common factors and factor loadings are not separately

identifiable. For any invertible matrices HR and HC ,

Xt “ RFtC
1 ` Et “ pRHRqpH´1

R FtH
1
C

´1qpCHCq1 ` Et “ R˚F˚
t C˚1 ` Et.

In order to identify the model, we need to impose K2

C and K2

R restrictions on the row and

column factor loadings respectively. Inspired by Bai and Ng (2013), the following schemes are

studied:1

(Res1) Partitioning C “ pC1
1
, C1

2
q1, we restrict C1 to be an invertible lower triangular matrix

with positive diagonal entries. Moreover, N´1

C C1C “ IKC
.

(Res2) Partitioning C “ pC1
1
, C1

2
q1, we restrict C1 “ IKC

.

Under the first set of identification restrictions, the first column of Xt is affected by the first

column of Ft only, while the second column of Xt is affected by the first two columns of Ft

only, and so on. Under the second set of the restrictions, each of the first KC columns in Xt is

affected by one column of Ft only. Two remarks are made here: First, the above restrictions

are imposed on R and C independently, i.e., we can impose Res1 on one of them and Res2 on

the other. Second, in contrast to Bai and Ng (2013), no restriction is imposed on the common

factors.

1Here we only consider the restrictions on C, since those on R can be applied analogously by taking transpose

of Xt.



Under each set of identification restrictions, we transform the estimated loadings such that

the restrictions are satisfied. Let rC “ p rC1
1
, rC1

2
q1 be the partition of rC such that rC1 is square:

(Res1) We obtain the QR decomposition of rC1
1

“ QCUC , where QC is a KC ˆKC orthogonal

matrix and UC is upper triangular. The transformed column loading estimate is then

pC “ rCQC . The rotation matrix becomes H˚
C “ HCQC .

(Res2) The column loading is transformed as pC “ rCrC´1

1 . The rotation matrix becomes

H
:
C “ HCC´1

1 .

Similarly, we can define H˚
R “ HRQR and H

:
R “ HR

rR´1

1 , where QR is obtained from the

QR decomposition of rR1
1
. Let δNT,R “ mint

?
NCT , NRu and δNT,C “ mint

?
NRT , NCu, we

show the following.

Theorem 3.1

Under Res1 or Res2 and the respective transformations, H˚
C “ IKC

` Oppδ´1

NT,Cq and H
:
C “

IKC
` Oppδ´1

NT,Cq. Similarly, H˚
R “ IKR

` Oppδ´1

NT,Rq and H
:
R “ IKR

` Oppδ´1

NT,Rq.

Combining with the results in Chen and Fan (2021), the transformed estimated factor loadings

are now consistent without rotations. Specifically,

pri ´ ri “ Op

`
δ´1

NT,R

˘
, pcj ´ cj “ Op

`
δ´1

NT,C

˘
.

For the matrix of latent factors,

pFt “ N´1

R N´1

C
pR1Xt

pC “ Ft ` Op

`
mintδNT,C , δNT,Ru´1

˘
.

4 Application to international portfolio return data

This section applies the studied method on a set of international portfolio return data. The

use of approximate factor model in asset pricing has been popular since the seminal works

of Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986, 1988, 1993). The

linear factor model has also been used to explain international asset returns. An early review of

the international asset pricing models can be found in Karolyi and Stulz (2003). More recent

applications of linear factor models on international asset pricing can be found in Hou, Karolyi,

and Kho (2011), Fama and French (2012, 2017), Asness, Moskowitz, and Pedersen (2013) and

Amihud, Hameed, Kang, and Zhang (2015).

4.1 Data and model

We obtain the monthly international portfolio return data from the website of Kenneth R.

French. The dataset covers 21 markets. For each market, we have the return data of a market



Figure 1: Estimated row and column loadings

portfolio, as well as high and low book-to-market (B/M), earnings-price (E/P), cash earnings

to price (CE/P), and dividend yield (D/P) portfolios. Therefore, for each time period, the data

can be arranged as

Market High B/M Low B/M ...

United States x11,t x12,t x13,t ...

Germany x21,t x22,t x23,t ...
...

The dataset spans the period between 1991 and 2017. Due to the choice of portfolios, we will

set KR “ KC “ 2.

4.2 Estimation and Identification

We estimate the model by 2DSVD and apply Res1 to both the column and row loadings to

identify the factors. Note that the zero restrictions are only applied to the first column and first

row, i.e., we assume that the first row (United States) of Xt is only affected by the first row

of Ft, and that the first column (Market) of Xt is only affected by the first column of Ft. The

factor loadings of the remaining columns and rows are not restricted.

The factor loadings are displayed in Fig.1. We plot the column loadings on the left. Ob-

serving that all types of portfolio have a positive loadings on the first column factor, we may

interpret the first column of the factor matrix as the market factors. For the second column, all

the portfolios formed with value stocks have positive loadings, while those formed with growth

stocks have negative loadings. Thus, the factors in the second column may be interpreted as

the value factors. On the right, we observe that the loadings for the first column factor are all

positive and close to one. Therefore, the first row may be interpreted as the global factor. In the

second column, we observe that all European countries have positive loadings, while all other



Figure 2: Estimated loadings with PCA

countries have negative loadings. Moreover, we can also observe that the loadings of countries

with relatively week economies, especially in the recent European debt crisis, like the GIIPS

countries, are larger. We name them the European factors. In sum, the common factors can be

interpreted as

Ft “
˜

FGlobal, Market FGlobal, Value

FEuropean, Market FEuropean, Value

¸

t

.

For comparison, we estimate a four-factor model with PCA. The estimated factor loadings

are plotted in Fig.2. All portfolios have positive loadings on the first factor, regardless of their

countries and the portfolio types. Therefore, we may consider it as the global market factor. For

the second factor, we observe that most European countries have a positive loading, while the

loadings of all non-European countries are negative or close to zero. The signs of the loading

are the same across portfolio types. The second factor can be viewed as the European market

factor. The third and the fourth factors are hard to interpret, though they seem to be related

to the value factor. This simple exercise clearly shows the advantage of the studied method

that. Compared to traditional methods, 2DSVD together with the identification restrictions can

provide a better interpretation of the estimated factors.



5 Conclusion

This note studies the matrix-valued factor model. As in standard factor models, the latent fac-

tors and factor loadings are not separately identifiable. We extend the identification restrictions

proposed by Bai and Ng (2013) and show that the both the common factors and factor loadings

can be consistently estimated without rotations. We apply the method to a set of international

portfolio return data and demonstrate how the studied method can be used to interpret the esti-

mated factors.
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