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Abstract
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1. Introduction

Economic uncertainty, i.e., the impossibility of predicting future economic events,
can manifest as a consequence of shocks such as recessions, wars or pandemics, and its
repercussions are severe: from a household perspective, uncertainty in future incomes
leads to risk-aversion with a higher propensity for savings with respect to consumption;
similar conclusions apply also at firm level for investment and hiring decisions. As a
consequence, the output slows down and the downturn following the initial shock is
amplified.

Leduc and Liu (2016), for instance, compare uncertainty shocks to aggregate demand
ones since they both increase unemployment and reduce inflation. In line with this
finding, Basu and Bundick (2017) document a negative co-movement of consumption,
investment, hours worked and output as a response to an adverse uncertainty shock.
Bloom (2009) considers instead the impact on firms which, with heightened uncertainty,
postpone their investment and hiring decisions, leading to an output loss. Other con-
tributions move in similar direction, such as Caggiano et al. (2014), who investigate the
unemployment dynamics subsequent to uncertainty rise, or Moore (2017), who builds an
economic uncertainty index for Australia highlighting the reduction in investment and
employment growth due to uncertainty spikes.1 Uncertainty, however, affects financial
market volatility too, whose interaction with the real economy makes the resulting im-
plication even more severe: as pointed out among the others by Liu and Zhang (2015);
Ludvigson et al. (2015); Carriero et al. (2018), uncertainty about financial market is
an additional source of output fluctuation. Finally, uncertainty poses several challenges
to policy makers: Fernández-Villaverde et al. (2015) consider the cost of uncertainty in
terms of fiscal policy volatility shocks documenting negative and sizable effects for the
economic output; Aastveit et al. (2017); Caggiano et al. (2017) investigate the role of
uncertainty in monetary policy in terms of reduced effectiveness which is even more ex-
acerbated in the case of Zero Lower Bound; moreover, Bayer et al. (2019) emphasize the
wealth redistribution and welfare effects of economic policies under income uncertainty.

Starting from this premise, Covid-19 outbreak is surely a major driver for economic
uncertainty and finding a way to correctly capture the phenomenon is arduous. If on the
one hand mobility reduction policies are effective to prevent the spread of the pandemic
(Chernozhukov et al., 2021), on the other hand they will most likely induce a slowdown
in economic activity (Chen et al., 2020). The impossibility of determining the persistence
of the crisis eventually causes a worry for the economic stability and an increasing social
pressure, leading to a spike in uncertainty. Caggiano et al. (2020), for instance, using the
VIX index as a proxy for pandemic-induced uncertainty, predict a cumulative economic
output loss in terms of world industrial production of 14% in one year.

Measuring economic uncertainty is challenging given its unobservability. Suggested
approaches are to use as proxies financial volatility indexes (e.g., the VIX), ad hoc mea-
sures such as the Economic Policy Uncertainty index (EPU) as proposed by Baker et al.
(2016), or Google Trends-based indexes (GTIs) as stressed in Dzielinski (2012); Donadelli
and Gerotto (2019). GTIs, in particular, are based on web searches which should reflect
economic agents thoughts and worries (Castelnuovo and Tran, 2017): by retrieving the
number of times some specific keywords have been searched, we can draw implications
on how economic agents react to economic policy news. However, even if there is evi-

1For a detailed literature review see Castelnuovo et al. (2017).



dence that such indicators well capture different aspects of economic uncertainty, it is still
unclear how Covid-19 related mobility policies directly affect uncertainty. In this work
we aim precisely to investigate whether recent limitations in individual mobility foster
economic distrust.

In particular, we perform the analysis with Italian data: the country has been charac-
terized by high contagions from the very beginning, and has almost immediately adopted
strict mobility restrictions. The state of emergency was declared by Italian institutions
on 31st January 2020, much earlier than the official global health emergency statement
by the World Health Organization (11th of March). In February, eleven municipalities in
northern Italy were placed under quarantine; on 9th March, the quarantine was extended
to all Italy; after two weeks, the Government disposed the closure of all non-essential
businesses and industries, together with the human movement restriction between and
within Regions. Starting from May, the imposed restrictions were gradually eased, till
November, when new mobility policies were introduced to counter a new spread of conta-
gions. However, the policy has changed with the beginning of the “second wave”, moving
from National to Regional regulation.

We propose a Structural Vector Autoregressive (SVAR) approach to analyze the dy-
namics of Covid-19, mobility policies and perceived economic uncertainty. We will use
the Covid-19 Replication index, the Google Mobility index for housing permanence as in-
dicator of mobility restrictions, and finally a GTI to proxy economic uncertainty, showing
how the last one is significantly affected by Covid-19 and mobility shocks.

The major contribution of this paper is to provide a comprehensive picture of the
dynamic interdependence of these three variables. Since it is so far difficult to evaluate
the impact of the pandemics on the real economy, we believe it is crucial to focus on
the uncertainty counterpart, which reacts quickly. Moreover, we use high frequency
and rather innovative data, in particular, proposing a new index to measure economic
uncertainty for the Italian case and on daily basis.

The structure of the article is the following. Section 2 describes the data. Section
3 includes a description of the SVAR model and the related findings. In Section 4, we
report further analyses to investigate the robustness of the results. Finally, Section 5
concludes.

2. Dataset

This section provides a comprehensive description of the used data, with particular em-
phasis on the definition of the variables: (i) the R index, Rt (ii) the Google housing
permanence index, housingt (iii) a GTI for economic uncertainty, GTUt; they represent,
respectively, a quantification of the Covid-19 epidemic trend of infections, a measure of
mobility restrictive policies and an index reflecting economic worry. The dataset refers
to Italy during the first pandemic wave, i.e. from 2nd March to 2nd November 2020. The
choice of the time span is based on two fundamental matters: from the one hand, the
beginning coincides with the Covid-19 data availability from public sources, and from the
other, we have decided to focus on the “first wave” of contagions with the idea of captur-
ing more directly the economic effects of the pandemic when it was largely unknown and
not direct countermeasures were available (vaccines or drugs). We restrict the analysis
to 2nd November 2020, since thereafter the “second wave” has officially begun and the
related mobility policy has changed.
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Figure 1: Rt series, daily data

2.1 The R index

A simple and direct indicator of Covid-19 spread is surely the series of daily contagions,
however this measure is highly sensitive on how the disease is detected i.e., the number
of nasopharyngeal swabs tested. As a consequence, it can easily underestimate the real
magnitude of the phenomenon if not adjusted.

To correctly quantify the precise epidemic-related scenario, we therefore employ the
so-called R index, defined as the reproduction number of the epidemic through time,
given the incidence time series and the serial interval distribution (Cori et al., 2013). In
other words, it estimates the expected number of cases generated by a single infected
individual in a not immunized population.

We compute2 the Rt starting from the “new infected” (nuovi positivi) series from
Italian Protezione Civile daily data.3 The serial interval distribution is assumed as a
Gamma with parameters of shape α = 1.87 and rate β = 0.28, as estimated for Lombardy
Region (Cereda et al., 2020) and suggested by the Italian National Health Institute.4 The
series is reported in Figure 1.

2.2 Google mobility index

During Covid-19 emergency, Google has made mobility data coming from Google Maps
publicly disposable: the 2020 Google Global Mobility Report5 provides aggregated and
anonymous information related to the variation of visits or length of stay at places of
different categories, with respect to a benchmark defined via the daily median computed
from the 3rd January to the 6th February 2020. Place categories are “Retail and recre-
ation”, “Grocery and Pharmacy”, “Parks”, “Transit stations”, “Workplaces” and “Residen-
tial”. Whereas the last one is expressed as percentage change of permanence duration with
respect to the baseline, all the other ones are instead computed as percentage changes
of visits number. For the mobility restrictions dynamics, in particular, we define our
variable housingt as the “Residential” series: since it manifests a quite evident seasonal
pattern, we employ a structural model à la Harvey (1990) as a filter. Figure 2 reports in

2“EpiEstim” R package, https://cran.r-project.org/web/packages/EpiEstim/index.html.
3https://github.com/pcm-dpc/COVID-19.
4Istituto Superiore della Sanità:

https://www.iss.it/coronavirus/-/asset_publisher/1SRKHcCJJQ7E/content/

faq-sul-calcolo-del-rt.
5https://www.google.com/covid19/mobility/.

https://cran.r-project.org/web/packages/EpiEstim/index.html
https://github.com/pcm-dpc/COVID-19
https://www.iss.it/coronavirus/-/asset_publisher/1SRKHcCJJQ7E/content/faq-sul-calcolo-del-rt
https://www.iss.it/coronavirus/-/asset_publisher/1SRKHcCJJQ7E/content/faq-sul-calcolo-del-rt
https://www.google.com/covid19/mobility/
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Figure 2: Original and structural model filtered series for housingt

the top panel both the original series (denoted as housing_seasonalt) and the seasonal-
adjusted housingt, whereas the bottom panel depicts only the seasonal-adjusted one for
the seek of clarity.

Notice that the variable is associated with high values when mobility policies are more
restrictive and with lower ones when such measures are relaxed.

2.3 Uncertainty index

We exploit Google Trends to download search volumes data for the keywords reported
in Table I, which should reflect the level of economic-related worry from the individual
perspective. Our GTUt variable is obtained as the first principal component of the key-

Table I: Keywords used for GTUt construction
Keyword Description

Cassa Integrazione Wages Guarantee Fund by the Italian legislation
Caritas Catholic volunteering and charity confederation
Bollette Bills
Disoccupazione Unemployment
Aiuti economici Economic aid

words volume searches time series. The series exhibits a pronounced seasonal pattern as
it can be grasped from Figure 3; for this reason the same procedure based on structural
model filtering is here applied too.

From the filtered series (bottom panel of Figure 3) we observe a surge in economic
uncertainty in the first weeks of the sample, followed by a slow but persistent decline.
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Figure 3: Original and structural model filtered series for GTUt

2.4 Preliminary analysis

In this section, we discuss the properties of the series we outlined above. At first, we
run the Augmented Dickey Fuller (ADF) unit root test (Dickey and Fuller, 1979) on the
three series.

Table II: Augmented Dickey-Fuller Tests

Variable Lags Test statistic τ p-value

Rt 15 -2.5064 0.1139

housingt 20 -3.3745 0.0119

GTUt 9 -1.5815 0.4921

Note: Lags determined by AIC (max=21). The de-
terministic component only includes a constant.

Table II collects the results of the ADF tests showing that the null hypothesis, under
which the series are ∼ I(1), is rejected only for the variable housingt. At this point, a
cointegration analysis is performed to detect any possible long-run relationship among
the three variables. For almost all the specifications, the Johansen’s Cointegration test
(Johansen, 1988) detects a full rank cointegration matrix, suggesting the stationarity of
the system. A detailed list of the results is reported in Table III in Appendix A.



In line with these findings, we believe that the results of the ADF tests could be
misleading if we take into account the nature of the problem we are analyzing. Firstly,
it is reasonable to assume that the behavior of the three series in the initial period of
the sample is due to few extreme shocks, given by the sudden pandemic outbreak, rather
than reflecting permanent fluctuations due to a unit root. Moreover, it is well known that
unit root tests exhibit low power when the persistence of a time series is strong (DeJong
et al., 1992). We will thus treat the series as stationary. 6

3. Empirical Analysis

This section firstly introduces the Vector Autoregressive (VAR) model and the related
identification scheme for structural shocks. Then, we show the main results from the
baseline model. In order to provide a wider set of results, we report the Granger-causality
analysis in Appendix B.

3.1 Methodology

The empirical analysis is based on the estimation of the reduced form VAR model
of order 3, VAR(3), in Equation (1) for the variables collected in the vector yt =
{Rt, housingt, GTUt}:

yt = µ+
3

∑

k=1

Ψkyt−k + et, t = 1, . . . , T, (1)

where µ denotes an intercept, Ψk represents a 3× 3 matrix collecting coefficients and et
is the idiosyncratic component.

Starting from the reduced form residuals et, the identification of the structural shocks
ut is achieved by means of “short-run” restrictions in B given by a Cholesky scheme, so
that et = But as in Equation (2),

et ≡





eRt
e
housing
t

eGTU
t



 =





b11 0 0
b21 b22 0
b31 b32 b33









ucovid
t

u
policy
t

udistrust
t



 . (2)

The first structural shock, ucovid
t , identifies an exogenous epidemic-related perturbation;

the second one, upolicy
t , corresponds to a shock coming from the policy maker decisions

about mobility restrictions; finally, udistrust
t captures shocks related to the disbelief con-

cerning the economic environment.
Clearly, the ordering of the variables reflects our beliefs on the scheme listing the series

from the “most exogenous” to the “most endogenous” ones. This identification strategy
imposes restrictions such that the shocks in Rt are instantaneously affected by exogenous
“covid” ones only, whereas housingt is assumed to respond also to contemporaneous
“policy” shocks. Moreover, our measure of “economic uncertainty” is affected by covid-
related and policy shocks, further to “distrust” ones, resulting fully endogenous in our
system.

All the model parameters are estimated by Ordinary Least Squares (OLS). The order
of the VAR model is determined following the Akaike Information Criterion. Confidence

6Note that the VAR model would be a valid inferential tool when some variables in the model are
integrated of order I(1), see Toda and Yamamoto (1995).



intervals (C.I.) for structural shocks are derived by residual bootstrap with 1999 replica-
tions.

3.2 Baseline results

-0,02

-0,01

 0

 0,01

 0,02

 0,03

 0,04

 0,05

 0,06

 0  5  10  15  20  25  30  35  40  45

IRF: covid -> R

Bstrap 90% CI Bstrap median IRF

 0

 0,2

 0,4

 0,6

 0,8

 1

 0  5  10  15  20  25  30  35  40  45

IRF: covid -> housing

Bstrap 90% CI Bstrap median IRF

-0,05

 0

 0,05

 0,1

 0,15

 0  5  10  15  20  25  30  35  40  45

IRF: covid -> GTU

Bstrap 90% CI Bstrap median IRF

-0,025

-0,02

-0,015

-0,01

-0,005

 0

 0,005

 0,01

 0  5  10  15  20  25  30  35  40  45

IRF: policy -> R

Bstrap 90% CI Bstrap median IRF

 0

 0,2

 0,4

 0,6

 0,8

 1

 1,2

 1,4

 1,6

 0  5  10  15  20  25  30  35  40  45

IRF: policy -> housing

Bstrap 90% CI Bstrap median IRF

-0,15

-0,1

-0,05

 0

 0,05

 0,1

 0,15

 0  5  10  15  20  25  30  35  40  45

IRF: policy -> GTU

Bstrap 90% CI Bstrap median IRF

-0,02

-0,015

-0,01

-0,005

 0

 0,005

 0  5  10  15  20  25  30  35  40  45

IRF: distrust -> R

Bstrap 90% CI Bstrap median IRF

-0,2

 0

 0,2

 0,4

 0,6

 0  5  10  15  20  25  30  35  40  45

IRF: distrust -> housing

Bstrap 90% CI Bstrap median IRF

 0

 0,1

 0,2

 0,3

 0,4

 0  5  10  15  20  25  30  35  40  45

IRF: distrust -> GTU

Bstrap 90% CI Bstrap median IRF

Figure 4: S-IRF, VAR(3). Shaded area: 90% C.I.

Figure 4 shows the impact of the three structural shocks (by rows) on the R, mobil-
ity and uncertainty indexes by means of the Impulse Response Functions (IRFs). The
“covid” shock persistently affects the Rt over a month and induces a remarkable and con-
sistent restriction in mobility through time; at the same time, there is rise in economic
uncertainty.

The effect of mobility-related policy starts to produce a sizable and significant restrain
effect on the R index in two weeks. Differently, mobility restrictions lead to an increment
in economic uncertainty in a few days and the effect propagates for 40 days.

“Distrust” shocks negatively and remarkably affect the Rt in a few days and the impact
slowly mitigates in time. The effect on housingt is instead positive and it declines to zero
in a month.

Figure 5 shows that covid- and mobility-specific shocks explain more than 40% of the
variability in GTUt in 30 days and about the 50% in 45 days.

Our results suggest that both Covid-19 contagions and the related mobility restrictions
largely affect economic uncertainty. Bad news related to Covid-19 spread and mobility
restrictions produce negative expectations about the economic scenario with a consequent
rise in uncertainty. Of course this effect is not instantaneous but it takes a few days to
show up. Agents can only observe the outcome of the disease in terms of infected, health
care services demand and deaths, which is subsequent to contagions. Also, the delay
of mobility effect is smaller since only a minimal time occurs from announcement to
implementation of the policy.

Additionally, as a response to a “distrust” shock, we observe a reduction on Rt and
a rise on housingt: these may be explained again through the expectations channel that
produces worry about the future economic situation, thus reducing expected income,
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Figure 5: Forecast Error Variance Decomposition for GTUt

inducing precautionary savings and lowering consumption-related mobility. Interestingly,
the shock is absorbed in a few time, suggesting that individual reaction to news is only
momentary.

4. Robustness Analysis

With the purpose of extending the validity of our results, we propose two additional inves-
tigations. The first one concerns the use of different mobility proxies, whereas the second
one consists in a different methodological approach, following Local Linear Projections
as proposed byJordà (2005).

4.1 Mobility measures

Although we have focused on the “Residential” Google series, for robustness analysis we
repeat the empirical exercise exploiting two other mobility measures, specifically two
indexes constructed as the first principal components of (i) the other variables in the
Google Mobility Report, and of (ii) three mobility series provided by Apple Mobility
Trends,7 respectively. The resulting series will be denoted as pca_mob_googlet and
pca_mob_applet.

First, from the Google Mobility Report, we consider the variables corresponding to
the mobility variation for the following place categories: “Retail and recreation”, “Grocery
and Pharmacy”, “Parks”, “Transit stations” and “Workplaces”.

Further, 2020 Apple data come from Apple Maps and report information on car move-
ments (“Driving” series), public transportation mobility ( “Transit” series) and walking
(“Walking” series). These are expressed as deviations from the reference value of January
13th 2020.8 Note that the above mobility indexes convey the opposite information of the
housingt variable, since they express a direct measure of how much people move, rather
than house permanence.

By substituting housingt variable with pca_mob_googlet in equation (1), we get the
IRFs reported in Figure 6, while Figure 7 reports the case for pca_mob_applet . The
results are coherent with those of the baseline model. In both scenarios here considered,
the R index positively responds to a shock in mobility, even though with different delay.

7https://covid19.apple.com/mobility.
8Apple missing data (11− 12th May 2020) have been recovered by interpolation.

https://covid19.apple.com/mobility


At the same time, an increase in mobility produces a temporary and negative effect on
uncertainty, confirming that restrictions would exacerbate economic worry.
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Figure 6: S-IRF, VAR(3), Google Mobility data. Shaded area: 90% C.I.
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Figure 7: S-IRF, VAR(3), Apple mobility data. Shaded area: 90% C.I.

4.2 Local projections

Local linear projections (Jordà, 2005) offer the opportunity to estimate the IRFs without
specifying the full multivariate model; in particular, they are robust to misspecification
of the Data Generating Process and are easy to be implemented.

This technique relies on the direct estimation of impulse responses at each horizon
with separate regressions. This way, it suffices to represent, via companion matrix, the



reduced form VAR model from Equation (1) and to estimate the parameters for each IRF
horizon h = 1, . . . , H, as

Y(t+h) = Mh +C(h)Yt−1 + Et+h, h = 1, . . . , H, (3)

where Y, Mh, C(h) and E denote the companion form counterparts of the original reduced
form VAR elements.

Figure 8 provides the resulting IRFs for the baseline model.
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Figure 8: IRFs, Local Linear Projections, Baseline model. Shaded area: 90% C.I.

In general, the results are coherent with those of the VAR analysis. However, IRFs
derived with Local Linear Projections are less smoothed and highlight even wider effects,
with respect to VAR-based ones. Moreover, the IRF associated to a shock in economic
uncertainty on housingt is characterized by a larger magnitude and the effect is persistent
over the horizon of 45 days, while the effect on Rt goes to zero even more rapidly.

5. Final remarks

The article investigates the relation between Covid-19-induced contraction of mobility and
economic uncertainty in Italy. By using a SVAR approach, our main findings are that
both Covid-19 contagions and the related mobility restrictions positively affect economic
uncertainty. Furthermore, Covid-19 and mobility shocks explain more than 40% of the
economic uncertainty variability in 30 days and about the 50% in 45 days. These results
are robust to the subsequent analyses we have implemented.

Given the rapid evolution of the pandemic and the lack of adequate data to directly
measure the effects on the economic activity, it is interesting to study the cost of economic
uncertainty during other disastrous events. Baker et al. (2020), for instance, perform an
illustrative exercise to project the macroeconomic consequences of the pandemic, using



natural disasters, revolutions and other similar scenarios to estimate the causal impact
of such shocks on output growth, via the uncertainty channel. Within this framework,
they predict that the output contraction due to Covid-19 will be due by more than a half
to induced economic uncertainty. Similarly, Ludvigson et al. (2020) try to quantify the
economic impact of disasters of recent US history and to extend the related findings to
the current epidemic crisis; they conclude that, even in an unrealistic case of a Covid-19
shock persisting for only 5 months, US industrial production is likely to cumulatively
drop by 20% and the service sector employment of nearly 39%. Clearly, analyzing the
phenomenon is of extreme importance, and quantifying Covid-19-induced economic un-
certainty is crucial to understand the future economic implications of this unexpected
shock.

Specifically, as documented in Section 1, the economic uncertainty stemming from
the Covid-19 pandemics and the related mobility restriction policy could have severe
consequences for the economy, across three main channels: (i) from the macroeconomic
perspective, the rise in precautionary savings opposed to reduction in consumption (Baker
et al., 2020) causes a slowdown in GDP growth; (ii) from the microeconomic side, the
negative effect is given by companies postponing decisions in terms of investment and
employment; (iii) another effect is given by the financial factor, which makes the cost
of debt rising when uncertainty is high. Overall, in addition, uncertainty may cause
permanent changes in behavior of households and businesses.

Finally, there are some policy considerations which should be taken into account. As
documented for instance in Bloom (2014), both fiscal and monetary policies become less
effective in terms of economic output when there is a spike in uncertainty, whereas at the
same time, unclear or hyperactive policies may cause further uncertainty, because they
can generate panic overreactions. As a consequence, policy makers should become forward
looking and embody directly the uncertainty factor in their response. If from the one hand
mobility restriction policies such as lock-downs are necessary and somehow optimal in the
medium term (Acemoglu et al., 2020; Alvarez et al., 2020; Eichenbaum et al., 2020), on
the other their short run effects in terms of supply chain disruption or decrease in hours
worked need to be mitigated considering also the related uncertainty. Expansionary fiscal
and monetary policy should stabilize expectations and guarantee a flexible and prompt
tool which rapidly adjusts to the pandemic evolution: for instance, monetary authorities,
by cutting the nominal interest rates, can effectively limit uncertainty (and recession)
effects. However, when the Zero Lower Bound is reached, the interaction with the fiscal
policy (and maybe unconventional monetary policies) becomes crucial. As reported in
Pekanov and Schiman (2020), a credible policy to contain uncertainty and pandemic
effects should combine both the medical and the economic aspects of policy measures
such as a lock-down. If monetary and fiscal policy can effectively act, the role of health
policy should not be underestimated in fixing expectations.
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Appendix

A. Cointegration analysis

This appendix reports the results of the Johansen’s Cointegration tests described in
Section 2.4. The order of the VAR is 3 and is determined according to the Akaike
Information Criterion. The Table reports estimated eigenvalues, the trace- and the λ-
max test as well as the relative p-values. We consider all the possible specifications for
the deterministic component as a robustness check.

Table III: Johansen’s Cointegration Tests

Deterministic Component Rank Eigenvalue Trace Test p-value λ-max Test p-value

No Constant 0 0.1198 47.186 0.0000 31.006 0.0001
1 0.0520 16.180 0.0100 12.987 0.0227
2 0.0131 3.1937 0.0859 3.1937 0.0878

Restricted Constant 0 0.1735 79.459 0.0000 46.299 0.0000
1 0.0852 33.160 0.0003 21.631 0.0042
2 0.0463 11.529 0.0162 11.529 0.0163

Unrestricted Constant 0 0.1728 78.621 0.0000 46.093 0.0000
1 0.0847 32.527 0.0000 21.503 0.0023
2 0.0444 11.024 0.0009 11.024 0.0009

Restricted Trend 0 0.1979 90.670 0.0000 53.578 0.0000
1 0.1010 37.092 0.0009 25.873 0.0035
2 0.0451 11.219 0.0814 11.219 0.0811

Unrestricted Trend 0 0.1940 85.561 0.0000 52.414 0.0000
1 0.1005 33.147 0.0001 25.738 0.0016
2 0.0300 7.4088 0.0065 7.4088 0.0065

Note: the test is based on the VAR(3) model.

B. Granger-causality Analysis

Since the seminal paper proposed by Granger (1969), Granger-causality analysis has
become a popular tool aimed at studying the relationships, in terms of predictive power,
among time series in a VAR model. In this regard, Table IV reports the Granger-causality
tests for the baseline VAR(3) model. Since the results are likely to be affected by the
choice of the information set, and this is substantially an arbitrary choice, we also double
the length of the VAR model and we run the same analysis including six lags of the
variables in order to avoid an excessive parametrization.



Table IV: Granger-causality Analysis

Model: VAR(3) Dependent variable

Rt housingt GTUt

Restrictions

Rt 6404.3 10.357 0.3804
(0.0000) (0.000) (0.7672)

housingt 1.9077 486.07 9.2409
(0.1290) (0.0000) (0.0000)

GTUt 1.2708 2.1243 79.104
(0.2851) (0.0979) (0.0000)

Model: VAR(6) Dependent variable

Rt housingt GTUt

Restrictions

Rt 1926.8 5.2554 1.1019
(0.0000) (0.000) (0.3621)

housingt 2.1065 219.34 4.0187
(0.0536) (0.0000) (0.0008)

GTUt 1.5340 1.0267 34.772
(0.1681) (0.4087) (0.0000)

Note: F -tests of zero restrictions. The Table reports the test
statistics and the p-values (in parenthesis).

Overall, the two model specifications provide similar results. The GTUt series does
not Granger-cause the other variables. This is in line with the theory: if we assume
that the uncertainty is somehow a byproduct of the pandemic and the related policies,
it would be counter-intuitive to think the past of an uncertainty measure can have some
explanatory power in Rt and housingt.

The Rt index Granger-causes housingt but not GTUt. The first result is trivial:
mobility restrictions are subsequent to the epidemic conditions. The second one suggests
that, conditional on the past values of the mobility index, the past of Rt is not useful for
predicting GTUt. This effect could apparently seem not fully coherent with the empirical
findings outlined in Section 3.2. Moreover, it is not sensitive to the number of lags in the
VAR model.

Finally, housingt Granger-causes GTUt. This result is coherent with the previous
points and the theoretical setup. We can observe a weak statistical evidence about the
Granger-causality from housingt to Rt, which only appears in the VAR(6) model.
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