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1. Introduction

In spite of all of its flaws, volatility is a key financial indicator, used both by investors for
portfolio allocation purposes and by market operators for managing derivative contracts.
There are mainly two approaches for the estimation of volatility. The first one, historical
volatility, is backward-looking and computed from the standard deviation of past returns.
The second one, implied volatility, is forward-looking because it is based on the prices
of options which mature some time in the future. More precisely, the implied volatility
is equal to the volatility parameter in the Black-Scholes-Merton (BSM) pricing formula
(Black and Scholes (1973) and Merton (1973)) that matches the market price of the
option.

When dealing with two or more assets, the correlations between assets, in addition
to the volatilities, play a crucial role. While historical correlations are easy to compute,
there is no obvious way to proceed with implied correlation. This is a strong limitation
for agents who are active in the markets for multi-asset derivative contracts because the
value of their trading book is highly sensitive to these correlations.

Campa and Chang (1998) is an early reference where implied correlation in foreign
exchange (FX) options markets is defined as a ratio of implied volatilities and used to
forecast realized correlation. Burtschell et al. (2009) study the notion of implied corre-
lation smile for Collateralized Debt Obligations and define it as the correlation param-
eters to be used in a one-factor Gaussian copula model to reproduce observed prices.
Linders and Schoutens (2014) develop an implied correlation measure for equity index
options based on the Gaussian copula. Markopoulou et al. (2016) define implied correla-
tion for SP100 index options as a ratio involving implied volatilities and index weights.

For two-asset options, implied correlation has frequently been defined as the correla-
tion parameter to be used in a bivariate Black-Scholes-Merton model (henceforth 2DBSM
model) to reproduce an observed price. Following this approach, Carmona and Durrleman
(2003) as well as Alexander and Scourse (2004) deal with spread options. Limitations
of this definition are commented in the introduction of Alexander and Venkatramanan
(2011). Da Fonseca et al. (2007) work with Wishart processes to build a model that is
applied to the pricing of best-of options and define implied correlation as the param-
eter to be used in a 2DBSM model with volatility levels set at their implied values.
Marabel Romo (2012) works with correlation model applied to the pricing of worst-of
options and compute implied correlation from the implied covariance matrix to be used
in a 2DBSM model.

In this paper we consider implied correlation for two-asset options as the correlation
parameter to be used in a model where the marginal distributions are recovered from
market prices of call and put options on each asset and the dependence is a bivariate
Gaussian copula. Hence, the reference model we use to define implied correlations departs
from a 2DBSM model because marginal distributions are not Gaussian and are consistent
with the full observed volatility smile for each asset. The marginal distributions are
recovered using the Breeden-Litzenberger formula (Breeden and Litzenberger (1978)).

Our contribution is to rigorously formalize a class a bivariate payoffs corresponding to
two-asset derivative contracts for which implied correlation exists and is unique as soon as
the observed price is free of arbitrage. Popular contracts such as basket, spread and min-
max options, as well as double binary options, belong to this class. This formalization
works with any form, parametric or non-parametric, chosen for the marginal distributions
of the underlying assets. For this class of payoffs we obtain an analytic form for the



sensitivity to the implied correlation parameter. We then work with an asymmetric
extension of the Student t copula in order to provide a numerical illustration of our
results applied to spread options. The asymmetric extension we consider is based on
power functions and is described in Liebscher (2008, 2011) and Andersen and Piterbarg
(2010).

The rest of the paper is structured as follows. In Section 2 we review the theoret-
ical framework in which our analysis is developed. In Section 3 we formalize the class
of bivariate contracts and the notion of implied correlation. Section 4 is dedicated to
numerical illustrations. Finally, Section 5 concludes.

2. Financial framework

We consider a financial market where two risky assets are traded. These risky assets have
initial prices S1

0 and S2
0 . We also consider a finite time horizon T . The final prices of the

risky assets are positive random variables on (Ω,F ,P) denoted by S1
T and S2

T , with P the
physical measure. The risk-free interest rate is assumed to be constant and denoted by
r. The discount factor corresponding to the final time horizon is computed as e−rT .

We assume that standard call options (vanilla options) with maturity T and positive
strikes are available for the two risky assets of our market. This assumption is equivalent
to assuming that the corresponding volatility smiles are known. For i = 1, 2, we denote
by C i(Ki, T ) the call option written on Si with maturity T and struck at Ki ∈ [0,+∞[,
with the special case C i(K = 0, T ) = Si, that is the call with a zero strike is the asset
itself.

In this market and in addition to these standard options, we deal with two-asset
derivative contracts that are written on the two risky assets. A two-asset derivative
contract Z has a final payoff defined as a positive random variable ZT = z(S1

T , S
2
T ) for a

positive payoff function z on [0,+∞[2.
We assume that our market with vanilla options and two-asset contracts is free of

arbitrage so that there exists at least one risk-neutral probability Q. This probability
measure Q is used in the sequel for pricing purposes. We refer to Tavin (2015) for further
comments on this aspect.

At t = 0, the current price of a two-asset derivative contract Z is computed as an
expectation under a risk-neutral probability measure Q as

Z0 = e−rTEQ
[

z
(

S1
T , S

2
T

)]

. (1)

Let H be the joint cumulative distribution function under Q of (S1
T , S

2
T ). As is cus-

tomary, we decompose this bivariate distribution as, first, the univariate cumulative dis-
tribution functions F1 and F2 and, second, the associated bivariate copula C. The latter
characterizes the chosen dependence between S1

T and S2
T . The relationships between H,

F1, F2 and C are given by Sklar’s Theorem as

H(s1, s2) = C (F1(s1), F2(s2)) ,

C(u1, u2) = H
(

F−1
1 (u1), F

−1
2 (u2)

)

.

For a statement of this fundamental result and details about copula functions, see
Nelsen (2006). Because we assume that (single-asset) call option prices, or implied volatil-
ities, are available for all positive strikes it is possible to uniquely recover the marginal



distributions of S1
T and S2

T . It means that in the joint distribution H, the marginals F1

and F2 are consistent with the full volatility smile of each asset. In this framework, F1

and F2 are computed from call option prices using the Breeden-Litzenberger formula, see
Breeden and Litzenberger (1978). For i = 1, 2 and x ≥ 0

Fi(x) = 1 +
1

e−rT

∂C i
0

∂Ki

(x). (2)

We assume marginal distribution functions Fi : [0,+∞[−→ [0, 1], i = 1, 2 to be con-
tinuous. This assumption is essentially technical and poses no restriction to practical
applications of the results.

Additionally, the expectation under Q in (1) can be written as a double integral

EQ [ZT ] =

∫∫

[0,+∞[2
z(s1, s2)dC(F1(s1), F2(s2))

=

∫∫

[0,1]2
z(F−1

1 (u1), F
−1
2 (u2))dC(u1, u2).

If C is absolutely continuous and has density c = ∂2C
∂u1∂u2

, the double integral becomes

EQT [ZT ] =

∫∫

[0,1]2
z(F−1

1 (u1), F
−1
2 (u2))c(u1, u2)du1du2. (3)

3. Implied correlation

3.1. A class of bivariate payoffs

We introduce a class of bivariate payoff functions, the I-payoffs, corresponding to a family
of two-asset derivative contracts for which the computation of the double integral in (1)
can be reduced to a single integral involving the joint distribution function H.

Definition 1. A payoff function z is said to be of class I if it has one of the following

forms.

Integrated Indicator Function:

∀(s1, s2) ∈ R2
+ z(s1, s2) =

∫ U

L

1{±s1≤g1(x),±s2≤g2(x)}dx, (4)

for two continuous functions g1 and g2 well defined on R+, L ∈ R+ and U ∈ R+∪{+∞},
L < U . And with g1, g2 different from the constants 0 and +∞.

Double Indicator Function:

∀(s1, s2) ∈ R2
+ z(s1, s2) = 1{±s1≤K1,±s2≤K2}, (5)

for K1, K2 ∈ ]0,+∞[ .

The most widespread bivariate payoff functions fall under the umbrella of the I-
payoffs. They correspond to the first form in the definition above. Other obvious members
of the I-class, corresponding to the second form, are double binary options (also named
double digital options), where K1 and K2 are the two strikes of the option.



Contracts corresponding to the first form can be seen as continuous portfolios of
double binary options. The latter can be seen as the elementary building blocks of the
two-asset payoff universe falling under the I-class.

Table 1 summarizes the payoff functions of common two-asset derivative contracts as
well as their I-forms. Without any loss of generality, we work with either call or put
options in order to simplify the expressions. The expression for the other contract can be
obtained via put-call parity identities. We show in the next section in what way such a
structure in the payoff function can be exploited to uniquely define an implied correlation.

Table 1: Payoff functions of classical two-asset options and their I-forms. With K ≥ 0 and K1,K2 > 0.

option name payoff I-form of z

spread option ZT =
(

S2
T − S1

T −K
)+

z(s1, s2) =
∫∞
0 1{s1≤x,s2≥x+K}dx

basket option ZT =
(

K − 1
2(S

1
T + S2

T )
)+

z(s1, s2) =
1
2

∫ 2K
0 1{s1≤x,s2≤2K−x}dx

max option ZT =
(

max (S1
T , S

2
T )−K

)+
z(s1, s2) =

∫∞
K

1{s1≥x,s2≥x}dx

double binary option ZT = 1{S1

T
≥K1,S

2

T
≥K2} z(s1, s2) = 1{s1≥K1,s2≥K2}

The price of a two-asset contract whose payoff function z belongs to the first form of
the I-class is given by

Z0 = e−rTEQ

[
∫ U

L

1{±S1

T
≤g1(x),±S2

T
≤g2(x)}dx

]

= e−rT

∫ U

L

Q
({

±S1
T ≤ g1(x),±S2

T ≤ g2(x)
})

dx. (6)

Where we assume the conditions are met so that we can switch the integral and the
expectation operators. When the payoff function z belongs to the second form of the
class I, the price is given by

Z0 = e−rTEQ
[

1{±S1

T
≤K1,±S2

T
≤K2}dx

]

= e−rTQ
({

±S1
T ≤ K1,±S2

T ≤ K2

})

. (7)

For basket options, the I-class representation is obtained as follows. The intu-
ition comes from the integral representation of a call contract payoff: (s−K)+ =
∫ +∞

K
1{s≥x}dx, for K ≥ 0 and ∀s ≥ 0. The price of a put on the equally weighted

basket can be written

e−rTEQ

[

(

K −
1

2
(S1

T + S2
T )

)+
]

= e−rT 1

2
EQ

[

(

2K − S1
T − S2

T

)+
]

.

Following Dhaene and Goovaerts (1996), we have, for K ≥ 0 and ∀s1, s2 ≥ 0

(2K − s1 − s2)
+ =

∫ 2K

0

1{s1≤x,s2≤2K−x}dx.

So that EQ
[

(

2K − S1
T − S2

T

)+
]

=

∫ 2K

0

Q
(

S1
T ≤ x, S2

T ≤ 2K − x
)

dx

=

∫ 2K

0

H (x, 2K − x) dx.



For spread and min-max options, the I-class representation of their payoffs is obtained
following the same steps and lead to the following expressions for their prices at t = 0

EQ
[

e−rT
(

(S2
T − S1

T )−K
)+

]

= e−rT

∫ +∞

0

(F1(x)−H(x, x+K)) dx,

EQ
[

e−rT
(

max (S1
T , S

2
T )−K

)+
]

= S2
0 + e−rT

(
∫ +∞

0

F2(x)dx−

∫ +∞

K

H(x, x)dx−K

)

,

EQ
[

e−rT
(

min (S1
T , S

2
T )−K

)+
]

= C1
0(K,T ) + P 2

0 (K,T )

+ e−rT

(
∫ +∞

K

H(x, x)dx−

∫ +∞

0

F2(x)dx

)

.

3.2. Pricing with the Gaussian copula

Marginal distributions F1 and F2, recovered from market prices of options, can be com-
bined with a bivariate Gaussian copula to form the joint distribution H. This copula is
the function corresponding to the dependence structure of a bivariate Gaussian distribu-
tion. It has one parameter ρ ∈ [−1, 1] and we denote it by CG

ρ . For (u1, u2) ∈ [0, 1]2, the
Gaussian copula is written, for ρ ∈]− 1,+1[

CG
ρ (u1, u2) =

1

2π
√

1− ρ2

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

exp

(

−
x2 − 2ρxy + y2

2(1− ρ2)

)

dxdy, (8)

where Φ is the cumulative distribution function of the normal distribution. An extension
by continuity with respect to ρ leads to

CG
ρ=+1 (u1, u2) = min (u1, u2) and CG

ρ=−1 (u1, u2) = max (u1 + u2 − 1, 0).

We refer to Meyer (2013) for a detailed review containing these formulas and other rele-
vant properties of the bivariate Gaussian copula.

For a bivariate derivative contract Z, we denote its price by ZG
0 (ρ) when the chosen

joint distribution H is built with the Gaussian copula CG
ρ with a correlation parameter

ρ ∈ [−1,+1]. In the notation ZG
0 (ρ), the superscript G stresses the choice of a Gaussian

copula to model the dependence under Q. However, it implies no specific form for the
marginals F1 and F2.

3.3. The notion of implied correlation

Given that the price of a two-asset derivative contract belonging to the I-class is observed
in the market, the corresponding implied correlation is defined as the value of the corre-
lation parameter to be used in (6) or (7), with the Gaussian copula, so that it reproduces
the given price.

For a contract belonging to the class I, it is also possible to obtain an analytic
expression for the sensitivity of the price with respect to the correlation parameter ρ

when the Gaussian copula is used for pricing.

The core results of the paper are given in the proposition below.



Proposition 2. Let Z be a two-asset contract with payoff function z in the I-class,
written on the risky assets S1 and S2, and with maturity T . We assume that the marginals

of S1
T and S2

T under Q are known and denoted by F1 and F2. Let ZG
0 (ρ) be the price of

the two-asset contract Z obtained with the Gaussian copula CG
ρ .

1. Let Zobs

0 be an observed arbitrage-free price for a two-asset contract Z. There exists a

unique ρ∗ ∈ [−1,+1] such that

ZG

0 (ρ∗) = Zobs

0 . (9)

2. For ρ ∈] − 1,+1[, the sensitivity of the two-asset contract price with respect to ρ has

the form

∂

∂ρ
ZG

0 (ρ) = ±
e−rT

2π
√

1− ρ2

∫ U

L

exp

(

−
1

2

h1(x)
2 − 2ρh1(x)h2(x) + h2(x)

2

1− ρ2

)

dx, (10)

where h1(x) = Φ−1(F1(±g1(x))) and h2(x) = Φ−1(F2(±g2(x))).

The proof of the proposition is detailed in Appendix A.

With this result, the notion of implied correlation for contracts with payoffs belonging
to class I appears to be a well-defined concept in the sense that it exists and is unique
as soon as the observed price is arbitrage-free. As such, implied correlation or implied
dependence can be seen as a key concept for agents managing these derivative contracts.
It corresponds to the level of Gaussian dependence between asset prices expected by
market operators and embedded in an observed contract price. If the observed price
leads to an arbitrage, the notion of implied correlation is meaningless because there is no
true distribution able to reproduce the observed price.

For a spread option (call), the sensitivity to ρ is negative and, from the proposition
above, it is written as

∂

∂ρ
ZG

0 (ρ) = −
e−rT

2π
√

1− ρ2

∫ +∞

0

exp

(

−
1

2

y1(x)
2 − 2ρy1(x)y2(x) + y2(x)

2

1− ρ2

)

dx < 0, (11)

with y1(x) = Φ−1(F1(x)) and y2(x) = Φ−1(F2(x+K)).

For a call option on the equally weighted basket, this sensitivity is positive and written

∂

∂ρ
ZG

0 (ρ) =
e−rT

4π
√

1− ρ2

∫ 2K

0

exp

(

−
1

2

y1(x)
2 − 2ρy1(x)y2(x) + y2(x)

2

1− ρ2

)

dx > 0, (12)

with y1(x) = Φ−1(F1(x)) and y2(x) = Φ−1(F2(2K − x)).

4. Numerical illustration

This section presents a numerical illustration of the results obtained above. The risky
assets are the S&P500 and Nasdaq 100 indices. We use market data of June 2015 and
initial asset prices are normalized at 100 USD. Marginal distributions F1 and F2 are fitted
to the volatility smile and forward price of each asset. To do so, we used Normal Inverse
Gaussian distributions for the log-returns and obtained the corresponding parameters by



minimizing the squared errors with respect to the volatility smiles. The interest rate is
r = 0.80%.

The copula we use to produce results is a Power Student t copula (PST) obtained
by applying an asymmetric power transformation to the bivariate Student t copula.
This power transformation is introduced and studied in Liebscher (2008, 2011) and
Andersen and Piterbarg (2010). This copula is denoted by CPST

ρ,ν,δ,θ and works with four
parameters, namely ρ, ν, δ and θ. It is written as, for (u1, u2) ∈ [0, 1]2

CPST
ρ,ν,δ,θ(u1, u2) = u

1−(δ+θ)
1 u

1−(δ−θ)
2 T2

(

T−1
ν

(

uδ+θ
1

)

, T−1
ν

(

uδ−θ
2

)

, ρ, ν
)

,

with T2(., ., ρ, ν) the cumulative distribution function of the bivariate Student t distribu-
tion with parameters ρ and ν, and T−1

ν the inverse cumulative distribution function of
the univariate Student t distribution with parameter ν.

In Figure 1 we plot the implied correlation smile computed for spread option calls
written on the S&P500 and Nasdaq 100 indices struck at different levels below and above
zero and with 1-year maturity. We also plot sensitivity to implied correlation of these
bivariate contracts. This sensitivity is to be understood as the dollar change in contract
price when the correlation changes by one percentage point. This sensitivity is heavily
dependent on the design of the product and reaches its highest values (in absloute terms)
for strikes close to zero.
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Figure 1: Implied correlation smile obtained with the PST copula for spread option calls with different
strikes and written on the Nasdaq and S&P indices (left). Sensitivity to implied correlation of spread
option calls with different strikes and written on the Nasdaq and S&P indices (right).

5. Conclusion

In this note we have formalized a rigorous framework in which the notion of implied
correlation has been defined for a large class of two-asset derivative contracts. We have
obtained an analytic expression for the sensitivity of a contract’s price to the correlation
parameter. These results have been illustrated with equity indices market data. In
particular, we showed how the level of sensitivity to implied correlation evolves with the
contract design, namely its strike.



Appendix A. Proof of Proposition 2

There are four cases for equation (6), depending on the signs in the payoff function:

∫ U

L

Q
[

+S1
T ≤ g1(x),+S2

T ≤ g2(x)
]

dx =

∫ U

L

H(g1(x), g2(x))dx,

∫ U

L

Q
[

−S1
T ≤ g1(x),+S2

T ≤ g2(x)
]

dx =

∫ U

L

(F2(g2(x))−H(−g1(x), g2(x))) dx,

∫ U

L

Q
[

+S1
T ≤ g1(x),−S2

T ≤ g2(x)
]

dx =

∫ U

L

(F1(g1(x))−H(g1(x),−g2(x))) dx,

∫ U

L

Q
[

−S1
T ≤ g1(x),−S2

T ≤ g2(x)
]

dx =

∫ U

L

(1− F2(g2(x))− F1(g1(x))) dx

+

∫ U

L

(H(−g1(x),−g2(x))) dx,

so that the price has the following form

ZG
0 (ρ) = c±

∫ U

L

CG
ρ (F1(±g1(x)), F2(±g2(x)))dx, (A.1)

where the constant c is independent from the dependence structure, and hence, from ρ.
Now, given the Fréchet-Hoeffding bounds, this implies that under the absence of

arbitrage,

min
(

ZG
0 (+1), ZG

0 (−1)
)

≤ ZG
0 (ρ) ≤ max

(

ZG
0 (+1), ZG

0 (−1)
)

. (A.2)

If the observed price Zobs
0 lies outside the bounds, it leads to an arbitrage and the notion

of implied correlation is not defined. For details on these no arbitrage bounds, we refer
to Dhaene and Goovaerts (1996), Tavin (2015) and references therein.

For ρ ∈] − 1,+1[, we recall the Plackett formula for the derivative of the Gaussian
copula obtained in Plackett (1954) for CG

ρ :

∂

∂ρ
CG

ρ (u1, u2) =
1

2π
√

1− ρ2
exp

(

−
1

2

Φ−1(u1)
2 − 2ρΦ−1(u1)Φ

−1(u2) + Φ−1(u2)
2

1− ρ2

)

,

which has a bivariate Gaussian density form (easy to bound) and the Leibniz rule applied
to (A.1) gives

∂

∂ρ
ZG

0 (ρ) = ±

∫ U

L

∂

∂ρ
CG

ρ (F1(±g1(x)), F2(±g2(x)))dx

= ±
1

2π
√

1− ρ2

∫ U

L

exp

(

−
1

2

h1(x)
2 − 2ρh1(x)h2(x) + h2(x)

2

1− ρ2

)

dx,

where h1(x) = Φ−1(F1(±g1(x))) and h2(x) = Φ−1(F2(±g2(x))). Accordingly, ∂
∂ρ
ZG

0 (ρ)

is different from zero and either always positive or always negative (so that the price of
the option is strictly monotonous in ρ). Since the integrand is continuous in ρ, so is the
integral and hence the implied correlation exists and is unique. The proof follows exactly
the same steps when the price is given by expression (7).
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