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Abstract
For three-candidate elections, we compute under the Impartial Anonymous Culture assumption, the conditional

probabilities of the Absolute Majority Winner Paradox (AMWP) and the Absolute Majority Loser Paradox (AMLP)

under the Plurality rule, the Borda rule, and the Negative Plurality rule for a given number of voters. We also provide

a representation of the conditional probability of these paradoxes for the whole family of weighted scoring rules with

large electorates. The AMWP occurs when a candidate who is ranked first by more than half of the voters is not

selected by a given voting rule; the AMLP appears when a candidate who is ranked last by more than half of the

voters is elected. As no research papers have tried to evaluate the likelihood of these paradoxes, this note is designed

to fill this void. Our results allow us to claim that ignoring these two paradoxes in the literature, particularly AMWP, is

not justified.
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1 Introduction

Let us assume n individuals (voters, decision-makers, judges, etc.) with strict rankings on a set of
three alternatives or candidates denoted by C = {a, b, c}. Individuals rank the candidates from the
most desirable candidate to the least desirable one. Each ranking is assumed to be a linear order, i.e.,
a transitive, antisymmetric, and total relation. In addition, each voter is assumed to vote sincerely
and act according to her true preferences. The six possible strict rankings on C are displayed in Table
1. In this table, it is indicated that n1 voters have the ranking a ≻ b ≻ c, i.e., they rank candidate a

at the top followed by candidate b and candidate c is the least preferred. In this framework, a voting
situation in defined by ñ = (n1, . . . , n6) and indicates the number of voters endowed with each linear

order such that
6
∑

i=1

ni = n.

Table 1: The six possible strict rankings on C = {a, b, c}
a ≻ b ≻ c n1 a ≻ c ≻ b n2 b ≻ a ≻ c n3

b ≻ c ≻ a n4 c ≻ a ≻ b n5 c ≻ b ≻ a n6

A Condorcet Winner (CW) is a candidate who is majority preferred to any other candidate, while
a Condorcet Loser (CL) is majority dominated by each of the other candidates. An Absolute Major-
ity winner (AMW) is a candidate who is top ranked by more than half of the voters. Similarly, an
Absolute Majority Loser (AML) is a candidate who is bottom ranked by more than half of the voters.
Using the labels of Table 1, we get what follows:

Candidate a is the CW ⇒ n1 + n2 + n5 > n3 + n4 + n6 and n1 + n2 + n3 > n4 + n5 + n6

Candidate a is the CL ⇒ n1 + n2 + n5 < n3 + n4 + n6 and n1 + n2 + n3 < n4 + n5 + n6

Candidate a is the AMW ⇒ n1 + n2 >
n

2
, i.e., n1 + n2 − n3 − n4 − n5 − n6 > 0

Candidate a is the AML ⇒ n4 + n6 >
n

2
, i.e., −n1 − n2 − n3 + n4 − n5 + n6 > 0

Notice that the CW (resp. the CL, the AMW and the AML) does not always exist as this can be
the case when there is a majority cycle.1 In addition, the AMW (resp. the AML), when she exists, is
also the CW (resp. the CL). When a voting rule always picks the CW, when she exists, this rule is
said to be Condorcet consistent. However, when a voting rule fails to select the CW, when she exists,
this defines the Condorcet Winner Paradox. There are also situations in which a voting rule can select
the CL and this defines the Condorcet Loser Paradox, also known as the Strong Borda Paradox.

A vast and rich literature has been devoted to the study of the Condorcet Winner Paradox as
well as the Condorcet Loser Paradox both normatively and in terms of assessing their probabilities of
occurrence. For a quick and non-exhaustive review, the reader may refer to the works of Cervone et al.
(2005), Diss and Gehrlein (2015, 2012), Gehrlein and Lepelley (2011), Kamwa and Valognes (2017),
among others. Up to our knowledge, just a little attention has been paid to the Absolute Majority
Winner Paradox (AMWP) and the Absolute Majority Loser Paradox (AMLP) which respectively
appear as special cases of the Condorcet Winner Paradox and the Condorcet Loser Paradox. The
AMWP occurs when a candidate who is the AMW is not selected by a given voting rule and the
AMLP appears when the AML is elected. Does the fact that no works have tried to evaluate the
likelihood of these two paradoxes mean that they never appear or that they are very rare events? This
note aims to fill this void by providing an answer to this question.

By considering the AMWP and the AMLP, we deal with the whole family of weighted scoring
rules which are voting systems that give points to candidates according to the rank they have in

1If a is majority preferred to b, b is majority preferred to c, and c is majority preferred to a, this describes one of
the two possible majority cycles with three candidates.



voters’ preferences and the winner is the candidate with the highest total number of points. In three-
candidate elections, the normalized vector (1, λ, 0) with 0 ≤ λ ≤ 1 can be used to represent the whole
family of weighted scoring rules. With this vector, a candidate will receive 1 point each time she is
ranked first in each individual preference, λ point when she is second and 0 point when she is ranked
last. The Plurality rule (PR), Borda rule (BR), and the Negative Plurality rule (NPR) are respectively
defined for λ = 0, λ = 1

2
and λ = 1. We denote respectively by S(a), S(b), and S(c) the accumulated

scores obtained by candidates a, b, and c under the weighted scoring rule. In this paper, we compute
for three-candidate elections, the conditional probabilities of the AMWP and the AMLP for a small
number of voters under PR, BR and NPR. In addition, by assuming large electorates, we provide a
representation of the conditional probability of the two paradoxes for the whole family of weighted
scoring rules as a function of λ.

In order to compute the conditional probabilities of AMWP and AMLP we need to set an assump-
tion on the voters’ preferences. In this note we rely on the well-known assumption of Impartial and
Anonymous Culture (IAC). Under IAC, each voting situation is assumed equally likely to occur. This
hypothesis has been introduced by Kuga and Hiroaki (1974) and later developed by Gehrlein and
Fishburn (1976). Under this assumption, the likelihood of a given event X is calculated in respect
with the following ratio:

Number of voting situations in which event X occurs

Total number of possible voting situations ñ
(1)

It is worthwhile to mention that we use the parameterized Barvinok’s algorithm developed by
Verdoolaege et al. (2004) in order to provide the probability of the two paradoxes under PR, BR
and NPR as a function of the number of voters. This algorithm is encoded to compute the number
of lattice points in a rational convex polytope and the output is a given in the form of Ehrhart
polynomials (Ehrhart, 1962, 1967). For more details on this algorithm and the related subjects, the
reader may refer to the works of Barvinok and Pommersheim (1999), Bruynooghe et al. (2005), Clauss
and Loechner (1998), Diss et al. (2012), Lepelley et al. (2008), Verdoolaege et al. (2004). As noticed
before, we also provide for large electorates the probability of the two paradoxes for the whole family
of weighted scoring rules. For this case, we will directly follow a procedure that was developed in
Cervone et al. (2005) and recently used in many research papers such as Diss and Gehrlein (2015,
2012), Gehrlein et al. (2015), Moyouwou and Tchantcho (2017), among others.2

2 Results

We first identify in Section 2.1 the range of weights for which the scoring rules (never) exhibit each
of the two paradoxes in three-candidate elections. Then, we provide in Section 2.2 the likelihood of
the two paradoxes under PR, BR and NPR for a given number of voters when the considered paradox
can be observed. In Section 2.3 we focus on the whole family of weighted scoring rules and large
electorates.

2.1 First results about these paradoxes

Proposition 1 tells us that in three-candidate elections, the AMLP never occurs for all the weighted
scoring rules located between BR and NPR but it may occur out of this range. Proposition 2 focuses
on AMWP and shows that this paradox may occur for all the weighted scoring rules except PR.

Proposition 1. For three-candidate elections, the Absolute Majority Loser Paradox never occurs for
1

2
≤ λ ≤ 1 and it may occur for 0 ≤ λ <

1

2
.

2Our computation files are available upon request.



Proof. For
1

2
≤ λ ≤ 1, suppose without loss of generality that candidate a is selected by the weighted

scoring rule defined by the weight λ. This implies that n1 + n2 + λ(n3 + n5) > n3 + n4 + λ(n1 + n6)
and n1 + n2 + λ(n3 + n5) > n5 + n6 + λ(n2 + n4). These two inequalities are equivalent to n4 <

(1− λ)n1 + n2 + λn5 − (1− λ)n3 − λn6 and n6 < n1 + (1− λ)n2 + λn3 − (1− λ)n5 − λn4. Adding and

collecting terms of the two last inequalities, we get n4+n6 <
2− λ

1 + λ
n1+

2− λ

1 + λ
n2+

2λ− 1

1 + λ
n3+

2λ− 1

1 + λ
n5

Hence, with
1

2
≤ λ ≤ 1, we obtain n4+n6 < n1+n2+n3+n5 since

2− λ

1 + λ
≤ 1 and

2λ− 1

1 + λ
≤ 1. Thus,

n4 + n6 <
n

2
. This contradicts that candidate a is the AML; thus, the the AMLP never occurs for

1

2
≤ λ ≤ 1. To show that the AMLP can happen for all λ ∈ [0,

1

2
[, just consider the following profile:

n1 = n2 = n6 = x, n3 = n5 = 0 and n4 = x+ 1 where x is an integer such that x > 1
1−2λ

. The reader

can easily check that for all 0 ≤ λ <
1

2
, candidate a is the AML in this profile. The scores are the

following: S(a) = 2x, S(b) = x+ 1 + 2λx and S(c) = x+ (2x+ 1)λ. Since x > 1
1−2λ

, it can easily be
checked that S(a) − S(b) = x − 1 − 2λx > 0 and S(a) − S(c) = x − (2x + 1)λ > 0. Thus, with this

profile, the AML may be elected for all 0 ≤ λ <
1

2
. Therefore, this profile can be used to show that

the AMLP may occur for 0 ≤ λ <
1

2
.

Proposition 2. For three-candidate elections, the Absolute Majority Winner Paradox never occurs
under the Plurality rule (λ = 0) and it may occur for 0 < λ ≤ 1.

Proof. Suppose without loss of generality that candidate a is an AMW. By definition, the AMW
always gets the highest score for λ = 0; so, the AMWP never occurs under the Plurality rule. In order
to show that the AMWP can occur for 0 < λ ≤ 1, just assume the following profile: n1 = n2 = z + 1,
n3 = n5 = 0, n4 = 2z and n6 = 1 where z is an integer such that z > 2−λ

λ
. The reader can easily check

that a is the AMW with this profile. The scores are the following: S(a) = 2z+2, S(b) = 2z+(z+1)λ
and S(c) = 1 + (3z + 1)λ. Since z > 2−λ

λ
, S(a) − S(b) = 2 − (z + 1)λ < 0. Thus, with this profile,

the AMW is not elected for all 0 < λ ≤ 1. So, this profile can be used to show that the AMWP may
occur for 0 < λ ≤ 1.

2.2 Probabilities of the paradoxes for well-known scoring rules

Notice that, when computing the probability of the two paradoxes in concern in this note, we are
more interested in the conditional probability. More precisely, we compute the probability that the
AMWP (resp. the AMLP) occurs given that the AMW (resp. the AML) exists. We begin first by
Proposition 3 which provides, for three-candidate elections, the existence probability of the AMW.
By symmetry, this probability is the same as the one of the AML.

Proposition 3. For three-candidate elections and a given number of voters, the existence probability
of the Absolute Majority Winner (Loser) under IAC assumption is given by:

PAMW (3, n, IAC) = PAML(3, n, IAC) =











9(n+6)n
16(n+1)(n+5)

for even n

3 (3n2+28n+49)
16(n+2)(n+4)

for odd n



We are now able to compute the conditional probability of the two Absolute Majority paradoxes.
The conditional probability of the AMWP (AMLP) is obtained according to the following formula:

Number of voting situations in which the AMWP (AMLP) occurs

Number of voting situations in which the AMW (AML) exists
(2)

Recall that the AMWP does not occur under PR while the AMLP can not be observed for BR
and NPR. For the other possibilities, our results are summarized in Propositions 4 to 6.

Proposition 4. For three-candidate elections with n ≥ 7, the conditional probability of the Absolute
Majority Loser Paradox under the Plurality rule is given by:

P PR

AMLP
(3, n, IAC) =















































































2n3+3n2−78n−72
81n3+729n2+2106n+1944

for n ≡ 0 mod 6

2n4+30n3+70n2−190n+88
81n4+1080n3+4590n2+7560n+3969

for n ≡ 1 mod 6

2n4+7n3−168n2−268n+1120
(81n3+891n2+2916n+2916)n

for n ≡ 2 mod 6

2n4+34n3+118n2−354n−1080
81n4+1242n3+6264n2+11718n+6615

for n ≡ 3 mod 6

2n4+11n3−82n2−216n+960
(81n3+1053n2+4374n+5832)n

for n ≡ 4 mod 6

2n3+24n2−66n−520
81n3+837n2+2727n+2835

for n ≡ 5 mod 6

Proposition 5. For three-candidate elections with n ≥ 2, the conditional probability of the Absolute
Majority Winner Paradox under the Borda rule is given by:

PBR

AMWP
(3, n, IAC) =















































































3n3+42n2+8n−768
81n3+729n2+2106n+1944

for n ≡ 0 mod 6

3n4+90n3+800n2+1670n−2563
27 (3n4+40n3+170n2+280n+147)

for n ≡ 1 mod 6

3n4+48n3+68n2−992n+1280
(81n3+891n2+2916n+2916)n

for n ≡ 2 mod 6

3n4+96n3+962n2+2784n−2565
27 (3n4+46n3+232n2+434n+245)

for n ≡ 3 mod 6

3n4+54n3+152n2−1024n−2560
(81n3+1053n2+4374n+5832)n

for n ≡ 4 mod 6

3n3+81n2+581n+455
27 (3n3+31n2+101n+105)

for n ≡ 5 mod 6

Proposition 6. For three-candidate elections with n ≥ 3, the conditional probability of the Absolute



Majority Winner Paradox under the Negative Plurality rule is given by:

PNPR

AMWP
(3, n, IAC) =























































































































































































127n4+2250n3+13920n2+36720n+36288
324n4+4860n3+25920n2+58320n+46656

for n ≡ 0 mod 12

127n4+2444n3+15738n2+41036n+44335
324n4+4968n3+25056n2+46872n+26460

for n ≡ 1 mod 12

127n5+2250n4+13920n3+37360n2+46608n+20640
324n(n4+15n3+80n2+180n+144)

for n ≡ 2 mod 12

127n3+2317n2+13101n+22815
324n3+4644n2+20412n+26460

for n ≡ 3 mod 12

127n4+1996n3+10248n2+20384n+8960
(324n3+4212n2+17496n+23328)n

for n ≡ 4 mod 12

127n4+1936n3+9198n2+18424n+13195
324n4+3672n3+14256n2+22248n+11340

for n ≡ 5 mod 12

127n4+1488n3+4992n2+6768n+2160
(324n3+2916n2+8424n+7776)n

for n ≡ 6 mod 12

127n3+1809n2+6693n+7571
324n3+3348n2+8316n+5292

for n ≡ 7 mod 12

127n4+1742n3+6952n2+9552n+1920
(324n3+3564n2+11664n+11664)n

for n ≡ 8 mod 12

127n3+1555n2+4533n+4185
324n3+2700n2+6156n+3780

for n ≡ 9 mod 12

127n4+1996n3+10248n2+20384n+15440
(324n3+4212n2+17496n+23328)n

for n ≡ 10 mod 12

127n4+2698n3+20052n2+62758n+72925
324n4+5616n3+34344n2+87696n+79380

for n ≡ 11 mod 12

Table 2 provides some computed values of PAMW (3, n, IAC), PAML(3, n, IAC), PBR

AMWP
(3, n, IAC),

PNPR

AMWP
(3, n, IAC), and P PR

AMLP
(3, n, IAC) for various values of n.

Table 2: Computed values of PAMW (3, n, IAC), PAML(3, n, IAC), PBR

AMWP
(3, n, IAC),

PNPR

AMWP
(3, n, IAC), and P PR

AMLP
(3, n, IAC)

n
PAMW (3, n, IAC)

PNPR
AMWP

(3, n, IAC) PBR
AMWP

(3, n, IAC) PPR
AMLP

(3, n, IAC)
= PAML(3, n, IAC)

3 0.8571 0.6327 0.1250 0
4 0.5000 0.5714 0 0
5 0.7857 0.5757 0.1212 0
6 0.5260 0.5062 0.0247 0
7 0.7424 0.5511 0.1021 0.0204
8 0.5385 0.4848 0.0346 0
9 0.7133 0.5126 0.0924 0.0210
10 0.5455 0.4781 0.0366 0.0092
11 0.6923 0.4961 0.0853 0.0179
50 0.5615 0.4117 0.0398 0.0207
51 0.5969 0.4198 0.0489 0.0251
100 0.5622 0.4023 0.0386 0.0229
101 0.5644 0.3935 0.0377 0.0247
. . . . .

∞ 0.5625 0.3920 0.0370 0.0247



From Table 2, many comments can be drawn. The first one is that the probability of the existence
of an AMW (AML) is substantially high. Despite the fact that this probability decreases as the number
of voters is increasing, it remains significant and reaches 56.25% for large electorates. Obviously, this
probability is lower than that of the existence of a CW (CL) but our results allow us to claim that
the difference between the two probabilities for a given number of voters remains negligible, especially
for small number of voters.3 Second, we can notice that the AMLP appears to be a very rare event.

Indeed, we have already shown that this paradox never occurs for
1

2
≤ λ ≤ 1. For 0 ≤ λ <

1

2
,

our results show that the occurrence of this paradox is pretty insignificant and never exceed 2.52%.
Finally, we notice that the occurrence of the AMWP is surprisingly very high, especially for NPR.
These first theoretical results indicate that the AMWP is not as rare as its absence from the literature
suggests.

2.3 Probabilities of the paradoxes for all weighted scoring rules and in-

finite electorates

For large electorates, Propositions 7 and 8 respectively give the limiting conditional probability of the
AMWP and the AMLP as a function of λ for three-candidate elections.

Proposition 7. For three-candidate elections with large electorates, the limiting conditional probability
of the Absolute Majority Winner Paradox under weighted scoring rules is given as follows:

P λ

AMWP
(3,∞, IAC) =











λ3

3 (λ− 2) (λ2 − 1)
for 0 ≤ λ ≤

1

2

32λ8 + 1008λ7 − 1838λ6 − 614λ5 + 1596λ4 − 619λ3 + 56λ2 − 6λ+ 4

486λ4 (−2 + λ) (λ+ 1)
for

1

2
≤ λ ≤ 1

Proposition 8. For three-candidate elections with large electorates, the limiting conditional probability
of the Absolute Majority Loser Paradox under weighted scoring rules is given as follows:

P λ

AMLP
(3,∞, IAC) =























(−λ2 − 4λ+ 6) (2λ− 1)4

243 (λ− 1)4
for 0 ≤ λ <

1

2

0 for
1

2
≤ λ ≤ 1

Table 3 provides some computed values of P λ

AMWP
(3,∞, IAC) and P λ

AMLP
(3,∞, IAC). We notice

from this table that the likelihood of AMWP is quite low for 0 ≤ λ < 1
2
but it grows considerably for

1
2
≤ λ ≤ 1. This paradox is maximized under NPR (λ = 1) with 39.2% of chance. Since the figures

we obtain concerning AMLP are very low for λ < 1
2
and that the paradox vanishes for λ ≥ 1

2
, we can

say that the AMLP should actually be a rare event. This paradox is maximized by PR (λ = 0) with
2.47% of chance.

3The probability of the existence of a CW (CL) under IAC assumption can be found for instance in Gehrlein and
Lepelley (2011, page 21).



Table 3: Computed values of P λ

AMWP
(3,∞, IAC) and P λ

AMLP
(3,∞, IAC)

λ Pλ
AMWP

(3,∞, IAC) Pλ
AMLP

(3,∞, IAC)
0 0 0.0247
0.1 0.0002 0.0144
0.2 0.0015 0.0067
0.3 0.0058 0.0021
0.4 0.0159 0.0002
0.5 0.0370 0
0.6 0.0783 0
0.7 0.1414 0
0.8 0.2196 0
0.9 0.3055 0
1 0.3920 0

3 Concluding remarks

By exploring the literature related to the theoretical probability of various paradoxes afflicting
voting procedures, we noticed that the AMWP and the AMLP did not receive enough interest. This
work attempted to fill this gap by providing the conditional probabilities of the AMWP and the
AMLP under PR, BR, and NPR for a given number of voters. We also provided a representation of
the conditional probability of each of these paradoxes for the whole family of weighted scoring rules
with large electorates. All our calculations are given under the well-known IAC assumption.

The central finding of this note is that the probabilities we obtained are not negligible. This then
implies that ignoring these two paradoxes, and more particularly the AMWP, as it is the case in
the literature is not justified. By way of comparison, the probability of the Strong Borda paradox4

and the one of the Strict Borda paradox,5 which have been the subject of several research papers in
the recent literature, never exceed 3.15% and 1.11%, respectively, with the whole family of weighted
scoring rules and large electorates.6 Recall that the probability we obtain for the AMWP is equal to
3.70% under BR and even reaches 39.20% under NPR with large electorates.

Notice finally that we could also look at a combination of the two paradoxes by calculating the
probability that the AMWP and the AMLP would appear at the same time. Given that the prob-
abilities of the AMLP are already low and taking into account Proposition 1, we conclude that the

probability of the combination of the two paradoxes will be equal to zero for
1

2
≤ λ ≤ 1 and should

be extremely rare for 0 ≤ λ <
1

2
. Thus, the study of the simultaneous occurrence of the AMLP and

the AMWP is neglected in this note.
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l’Academie des Sciences, Paris, 254: 616-618.
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