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Abstract
This article presents an algorithm that extends Ljungqvist and Sargent's (2012) dynamic Stackelberg game to the case

of dynamic stochastic general equilibrium models including forcing variables. Its first step is the solution of the

discounted augmented linear quadratic regulator as in Hansen and Sargent (2007). It then computes the optimal initial

anchor of "jump" variables such as inflation. We demonstrate that it is of no use to compute non-observable Lagrange

multipliers for all periods in order to obtain impulse response functions and welfare. The algorithm presented,

however, enables the computation of a history-dependent representation of a Ramsey policy rule that can be

implemented by policy makers and estimated within a vector auto-regressive model. The policy instruments depend on

the lagged values of the policy instruments and of the private sector's predetermined and "jump" variables. The

algorithm is applied on the new-Keynesian Phillips curve as a monetary policy transmission mechanism.
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1 Introduction

In a Ramsey optimal-policy model, the ability of the policy maker to stabilize the economy
depends on his credibility to anchor the path of the private sector’s endogenous variables
in an optimal way (Ljungqvist and Sargent (2012, chapter 19)). The private sector’s
intertemporal optimal behavior implies that its decision variables, such as consumption
and inflation, are free to jump.
Since Miller and Salmon (1985), the existing algorithms of Ramsey optimal policy

require the computation of Lagrange multipliers in order to compute impulse response
functions and welfare. The policy rule is written as a linear function of observable private-
sector’s predetermined variables, such as the stock of debt or of wealth, and of non-
observable Lagrange multipliers. Because Lagrange multipliers are non-observable time
series, such a representation of a Ramsey-optimal policy rule is useless, both for policy
makers wishing to implement optimal policy and for econometricians aiming to evaluate
stabilization policy.
Following Smets andWouters (2007), all estimated dynamic stochastic general equilib-

rium (DSGE) models now include auto-regressive forcing variables that are non-observable
time series, neither by policy makers, nor by econometricians. Each forcing variable cor-
responds to one of the private sector’s "jump variables". These non-observable forcing
variables are not included in Ljungqvist and Sargent’s (2012, chapter 19) algorithm. Be-
cause these auto-regressive forcing variables are non-observable time series, the same
statement as for the Lagrange multipliers can be made if those variables appear in the
representation of the Ramsey optimal policy rule. Such a representation is useless both
for policy makers and for econometricians.
This note makes three contributions:
Firstly, it solves the optimal initial anchor of the private sector’s "jump variables" on

the forcing variables in the linear quadratic case.
Secondly, it demonstrates that, in order to compute impulse response functions and

welfare, it is of no use to compute Lagrange multipliers that cannot be observed by policy
makers or econometricians. This allows to skip step two and step three in Ljungqvist and
Sargent’s (2012) algorithm. The numerical complexity of the algorithm can be reduced
by providing formulas that substitute Lagrange multipliers in some of the equations. This
is advantageous in larger models or in a structural estimation, when the model has to be
solved repeatedly.
Thirdly, the algorithm computes "history-dependent" vector auto-regressive (VAR)

representations of the stabilization policy-transmission mechanism and of the policy rule
as a function of lags of observable time-series only: policy instruments, jump variables
(consumption flow and prices) and predetermined variables (the stock of debt or the stock
of wealth). This is done by substitution of forcing variables which are not observable.
These representations are valid under two assumptions. Firstly, it assumes Smets and
Wouters’ (2007) hypothesis that the number of auto-regressive forcing variables is equal to
the number of observable time series depending on forward-looking variables. Secondly, it
assumes that a certain matrix is invertible. This matrix corresponds to the reduced-form
parameters of the response of the policy instruments to auto-regressive forcing variables
derived from the solution of a Sylvester equation.
The implication of the findings for the implementation and the evaluation of stabiliza-

tion policy is that, firstly, the algorithm provides a representation of the optimal Ramsey
policy rule which can be implemented by policy makers. Policy makers can decide the



current value of the policy instrument knowing its lagged values and the lags of the private
sector’s predetermined and jump variables. Secondly, the proposed VAR representation
of the optimal policy-rule and of the transmission mechanism can be directly tested by
econometricians, because the disturbances of this VAR are white noise, instead of being
auto-regressive forcing variables.

2 Ramsey optimal policy

To derive Ramsey optimal policy a Stackelberg leader-follower model is analyzed where
the government is the leader and the private sector is the follower. Let kt be an nk × 1
vector of controllable predetermined state variables with initial conditions k0 given, xt an
nx × 1 vector of endogenous variables free to jump at t without a given initial condition
for x0 (our first addition to Hansen and Sargent (2007)), put together in the (nk + nx)×
1vector yt = (k

T
t ,x

T
t )
T . The nu × 1 vector ut denotes government policy instruments.

Our second addition to Sargent and Ljungqvist’s (2012) Stackelberg problem is to
include an nz × 1 vector of non-controllable, exogenous forcing state-variables zt, such as
auto-regressive shocks. All variables are expressed as absolute or proportional deviations
from a steady state.
The policy maker maximizes the following quadratic function (minimizes the quadratic

loss) subject to an initial condition for k0 and z0, but not for x0:

−1
2

+∞∑

t=0

βt
(
yTt Qyyyt + 2y

T
t Qyzzt + u

T
t Rut

)
(1)

where β is the policy maker’s discount factor and her policy preferences are the relative
weights included in the matrices Q and R. Qyy ≥ 0 is a (nk + nx) × (nk + nx) positive
symmetric semi-definite matrix, R > 0 is a p × p strictly positive symmetric definite
matrix so that the policy maker has at least a very small concern for the volatility of
policy instruments. The cross-product of controllable policy targets with non-controllable
forcing variables yTt Qyzzt is introduced by Hansen and Sargent (2007, section 4.5). To
our knowledge, it has always been set to zero Qyz = 0 so far in models of Ramsey optimal
policy. This simplifies the Sylvester equation in step 3.
The policy transmission mechanism of the private sector’s behavior is summarized by

this system of equations:

(
Etyt+1
zt+1

)
=

(
Ayy Ayz

0zy Azz

)(
yt
zt

)
+

(
By
0z

)
ut, (2)

where A is an (nk + nx + nz) × (nk + nx + nz) matrix and B is the (nk + nx + nz) × p
matrix of marginal effects of policy instruments ut on next period policy targets yt+1.
The government chooses sequences {ut,xt,kt+1}+∞t=0 taking into account the policy

transmission mechanism (2) and 2(nx + nk + nz) boundary conditions detailed below.
The certainty equivalence principle of the linear quadratic regulator allows us to work

with a non-stochastic model. "We would attain the same decision rule if we were to
replace xt+1 with the forecast Etxt+1 and to add a shock process Cεt+1 to the right hand
side of the private sector policy transmission mechanism, where εt+1 is an i.i.d. random
vector with mean of zero and identity covariance matrix." (Ljungqvist and Sargent, 2012
p.767).



The policy maker’s choice can be solved with Lagrange multipliers using Bellman’s
method (Ljungqvist and Sargent (2012)). It is practical (but not necessary) to rewrite
the objective function of the policy maker by adding the constraints of the private sec-
tor’s policy transmission mechanisms multiplied by their respective Lagrange multipliers
2βt+1µt+1:

−1
2

+∞∑

t=0

βt
[
yTt Qyyyt + 2y

T
t Qyzzt + u

T
t Rut

]
+

2βt+1µt+1 [Ayyyt +Byut − yt+1] . (3)

The dynamics of non-controllable variables can be excluded from the Lagrangian (Hansen
and Sargent (2007, section 4.5)). It is important to partition the Lagrange multipliers µt

consistent with our partition of yt =

[
kt
xt

]
, so that µt =

[
µk,t
µx,t

]
, where µx,t is an nx×1

vector of Lagrange multipliers of forward-looking variables.
The first order conditions with respect to the policy transmission mechanism lead to

the linear Hamiltonian system of the discrete-time linear quadratic regulator (Hansen
and Sargent (2007, section 4.5)). The 2(nx+nk+nz) boundary conditions determine the
policy maker’s Lagrangian system with 2(nx + nk + nz) variables (yt, µt, zt) where µt are
the policy maker’s Lagrange multipliers related to each of the controllable variables yt.
Essential boundary conditions are the initial conditions of predetermined variables k0

and z0 which are given. Natural boundary conditions are chosen by the policy maker
to anchor the unique optimal initial values of the private sector’s forward-looking vari-
ables. The policy maker’s Lagrange multipliers of the private sector’s forward (Lagrange
multipliers) variables are predetermined at the value zero: ∂L

∂x0
= µx,t=0 = 0 in order

to determine the unique optimal initial value x0 = x∗0 of the private sector’s forward
variables.
Hansen and Sargent (2007) assume a bounded discounted quadratic loss function:

E

(
+∞∑

t=0

βt
(
yTt yt + z

T
t zt + u

T
t ut
)
)

< +∞ (4)

which implies

lim
t→+∞

βtzt = z
∗ = 0, zt bounded,

lim
t→+∞

βtyt = y
∗ = 0⇔ lim

t→+∞

∂L

∂yt
= 0 = lim

t→+∞
βtµt, µt bounded.

This implies a stability criterion for eigenvalues of the dynamic system such that∣∣∣(βλ2i )
t
∣∣∣ < |βλ2i | < 1, so that stable eigenvalues are such that |λi| < 1/

√
β < 1/β. A

preliminary step is to multiply matrices by
√
βas follows

√
βAyy

√
βBy in order to apply

formulas of Riccati and Sylvester equations for the non-discounted augmented linear
quadratic regulator (Hansen and Sargent (2007)).
Assumption 1: The matrix pair (

√
βAyy

√
βBy) is Kalman controllable if the con-

trollability matrix has full rank:

rank
(√

βBy βAyyBy β
3

2A2

yyBy ... β
nk+nx

2 Ank+nx−1
yy By

)
= nk + nx. (5)



Economic interpretation: Kalman controllability implies that policy instruments
can be chosen in a way that they have a direct non-zero effect (By) in the first period or
an indirect non-zero effect (Ak

yyBy) in the subsequent periods (period 2 to nk + nx − 1)
on all (nk + nx) policy targets. An indirect effect is obtained for example when a policy
instrument has an effect on the future value of a first policy target in the next period,
and that this first policy target has an effect on the next period’s value of a second policy
target. Assumption 1 is always assumed in all models of the transmission mechanism of
macroeconomic stabilization. Else, at least one of the policy targets is not controllable and
the stabilization of all policy targets is impossible. If ever a variable is not controllable,
then assumption 2 is necessary to ensure that stabilization is possible.
Assumption 2: The system is can be stabilized when the transition matrix Azz for

the non-controllable variables has stable eigenvalues, such that |λi| < 1/
√
β.

Economic interpretation: For variables that cannot be controlled by the policy
instruments stabilization is impossible, if the dynamics of the block of these exogenous
variables is diverging (i.e. it includes at least one unstable eigenvalue); the overall system
including the dynamics of exogenous variables is never stable. Assumption 2 is always
assumed in all models of the transmission mechanism of macroeconomic stabilization, else
stabilization is impossible. Typical non-controllable variables are auto-regressive shocks
in DSGE models (Smets and Wouters (2007)) with auto-correlation strictly below one,
the eigenvalues of the matrix Azz.
The algorithm proceeds in 4 steps:

Step 1: Stabilizing solution

A stabilizing solution of the augmented linear quadratic regulator satisfies (Hansen and
Sargent (2007, section 4.5)):

µt = Pyyt +Pzzt. (6)

The optimal rule of the augmented linear quadratic regulator is:

ut = Fyyt + Fzzt, (7)

where Py solves the matrix Riccati equation:

Py=Qy + βA
′

yyPyAyy − β
′

A
′

yyPyBy

(
R+ βB

′

yPyBy

)
−1

βB
′

yPyAyy, (8)

where Fy is computed knowing Py:

Fy = −
(
R+βB

′

yPyBy

)
−1

βB′yPyAyy, (9)

where Pz solves the matrix Sylvester equation knowing Py and Fy:

Pz = Qyz + β (Ayy +ByFy)
′
PyAyz + β (Ayy +ByFy)

′
PzAzz, (10)

where Fz is computed knowing Pz and Py:

Fz =
(
R+βB

′

yPyBy

)
−1

βB′y (PyAyz +PzAzz) . (11)

For step 4, this matrix Fz is assumed to be invertible, which amounts to assume that
B′y (PyAyz +PzAzz) is invertible.



Step 2: Solve for x0, the optimal initial anchor of forward-looking

variables

Proposition 1 The optimal initial anchor adds the term P−1y,xPz,xz0 with respect to Ljungqvist
and Sargent’s (2012) algorithm (step 4) missing exogenous forcing variables z0:

x0 = P
−1

y,xPy,kxk0 +P
−1

y,xPz,xz0 (12)

Proof. The policy maker’s Lagrange multipliers on private sector forward-looking vari-
ables are such that µ0,x = 0, at the initial date. The optimal stabilizing condition is:

(
µ0,k
µ0,x

)
=

(
Py,k Py,kx
Py,kx Py,x

)(
k0
x0

)
+

(
Pz,k
Pz,x

)
z0 =

(
µ0,k
0

)
. (13)

This implies:
Py,kxk0 +Py,xx0 +Pz,xz0 = 0 (14)

Which provides the optimal initial anchor:

x0 = −P−1y,xPy,kxk0 −P−1y,xPz,xz0 (15)

Proposition 1 generalizes the solution of Ljungqvist and Sargent ((2012), chapter 19,
part 2) Matlab code related to their specific example of a large firm with a compet-
itive fringe and a single forcing variable. There is no reference to the solution Pz of
Sylvester equation in their formal algorithm of Ramsey optimal policy in the general
linear quadratic case (Ljungqvist and Sargent ((2012), chapter 19) part 1).

Step 3: Impulse response functions and optimal loss function

Proposition 2 Impulse response functions and welfare can be computed without com-
puting all the values over time of all policy-makers Lagrange multipliers µt. Fy and Fz
provide a reduced form of the optimal policy rule. Py and Pz provide the missing initial
conditions according to proposition 1.

(
Etyt+1
zt+1

)
=

(
Ayy Ayz

0zy Azz

)(
yt
zt

)
+

(
By
0z

)
ut,

ut = Fyyt + Fzzt,

x0 = P
−1

y,xPy,kxk0 +P
−1

y,xPz,xz0, k0 and z0 given.

Proof. This information is sufficient to compute impulse response functions (the optimal
path of the expected values of variables yt zt and ut) and to sum up over time their value
in the the discounted loss function.

Step 4: The estimation of an implementable history-dependent

policy rule

Policymakers cannot implement a Ramsey optimal policy rule where policy instruments
respond to non-observable forcing variables zt or to Lagrange multipliers µt that are not



observable. They can implement an observationally equivalent representation of the Ram-
sey optimal policy rule where policy instruments respond to observable variables yt and
their lags and the lags of the policy instruments ut−1 ("history-dependent rule"). In many
DSGE models, the observable and controllable predetermined variables kt are set to zero
at all periods (Smets and Wouters (2007)), so that all predetermined variables are non-
observable forcing variables zt. Sargent and Ljunqgvist’s (2012) ut = f(ut−1,kt,kt−1)
history-dependent rule for observable and controllable predetermined variables kt should
be changed when dealing with non-controllable predetermined forcing variables zt which
are not observable time-series for the econometrician.

Proposition 3 If all the predetermined variables are non-observable forcing variables zt,
if their number nz is identical to the number ny of forward-looking variables yt as in
Smets and Wouters (2007), if the matrix Fz is invertible, one can compute a history-
dependent rule depending on lagged values of observable variables yt and lagged values of
policy instruments ut−1 in the following way:

(H)






(
Etyt+1
zt+1

)
=

(
Ayy +ByFy Ayz +ByFz

0zy Azz

)(
yt
zt

)
+

(
0
1

)
εt

ut = Fyyt + Fzzt
x0 = P

−1
y,xPy,kxk0 +P

−1
y,xPz,xz0, k0 and z0 given

⇔






(
Etyt+1
ut+1

)
=M−1 (A+BF)M

(
yt
ut

)
+M−1

(
0
1

)
εt

zt = F
−1
z ut − F−1z Fyyt

x0 = P
−1
y,xPy,kxk0 +P

−1
y,xPz,xz0, k0 and z0 given.

Proof.

A+BF=

(
Ayy +ByFy Ayz +ByFz

0zy Azz

)

(
yt
ut

)
=M−1

(
yt
zt

)
withM−1 =

(
Iny 0

Fy Fz

)

andM =

(
Iny 0

−F−1z Fy F−1z

)

There are as many auto-regressive forcing variables as controllable forward-looking vari-
ables. If the number of policy instrument is equal to the number of controllable forward-
looking policy targets, Fz is a square matrix which can be inverted. One eliminates
forcing variables zt and replaces them by policy instruments ut in the recursive equation,
doing a change of the vector basis.
In what follows we will apply the algorithm to the New-Keynesian Phillips curve.

3 Example: New-Keynesian Phillips curve

The new-Keynesian Phillips curve constitutes the monetary policy transmission mecha-
nism:

πt = βEt [πt+1] + κxt + zt where κ > 0, 0 < β < 1, (16)



where xt represents the output gap, i.e. the deviation between (log) output and its
efficient level. πt denotes the rate of inflation between periods t− 1 and t and plays the
role of the vector of forward-looking variables xt in the above general case. β denotes the
discount factor. Et denotes the expectation operator. The cost push shock zt includes an
exogenous auto-regressive component:

zt = ρzt−1 + εt where 0 < ρ < 1 and εt i.i.d. normal N
(
0, σ2ε

)
, (17)

where ρ denotes the auto-correlation parameter and εt is identically and independently
distributed (i.i.d.) following a normal distribution with constant variance σ2ε .
The loss function is such that the policy target is inflation and the policy instrument

is the output gap (Gali (2015), chapter 5):

max−1
2
E0

t=+∞∑

t=0

βt
(
π2t + rx

2

t

)
= −1

2

+∞∑

t=0

βt
(
πTt Qπππt + 2π

T
t Qπzzt + u

T
t Rut

)
,

where Qππ = 1, Qπz = 0 and R =r > 0.
The transmission mechanism can be written as:

(
Etπt+1
zt+1

)
=

(
Ayy =

1

β
Ayz = − 1

β

Azy = 0 Azz = ρ

)(
πt
zt

)
+

(
By = −κ

β

Bz = 0

)
xt +

(
0y
1

)
εt. (18)

This linear system of two equations (n = 2) does not satisfy the Kalman controllability
condition:

AB =

(
1

β
− 1

β

0 ρ

)( −κ
β

0

)
=

( − κ
β2

0

)

rank (B|AB) = rank
( −κ

β
− κ
β2

0 0

)
= 1 < n = 2

We will now look at the question whether the two assumptions are met. Assumption
1: When one considers only the first equation, there is only one policy target, n = 1,

the Kalman controllability condition is: rank (By) = rank
(
−κ
β

)
= n = 1, if −κ

β
6= 0.

If we assume that the slope of the new-Keynesian Phillips curve is not equal to zero:
κ 6= 0, then inflation is controllable by the output gap. There is a non-zero correlation
between the policy instrument (output gap xt) and the expected value of the policy target
(inflation Etπt+1).
Assumption 2: When one considers only the second equation, the Kalman con-

trollability condition is: rank (Bz) = rank (0) = 0 < 1. The cost-push shock is not
controllable by the output gap. There is a zero correlation between the policy instrument
(output gap xt) and the future value of the cost-push forcing variable zt+1. If we assume
that the non-controllable cost-push forcing variable is stationary, 0 < Azz = ρ < 1, then
the dynamic system including both equations can be stabilized.
The system is already written in Kalman canonical form which is defined such that

the bottom left block matrix of A is equal to zero Azy = 0 and the bottom block matrix
of B is zero: Bz = 0.



After substitution of the optimal policy rule (xt = Fππt + Fzzt), we obtain the closed
loop dynamic system:

(
Etπt+1
zt+1

)
=

(
λ = 1−κFπ

β
−1−κFz

β

0 ρ

)(
πt
zt

)
+ εt.

We denote λ = 1−κFπ
β

the "inflation eigenvalue" of the closed loop dynamics. We

use Gali’s (2015, chapter 5) numerical values, ρ = 0.8, β = 0.99, ε = 6, κ = 0.1275,
r = κ/ε = 0.1275/6 = 0.02125, when computing the algorithm.
Step 1: Pπ solves the matrix Riccati equation:

0 = −Py +Qy + βA
′

yyPyAyy − β
′

A
′

yyPyBy

(
R+ βB

′

yPyBy

)
−1

βB
′

yPyAyy.

0 = −Py + 1 +
1

β
Py + Py

κ

β

(
r +

κ2

β
Py

)−1(
−κ
β

)
Py,

0 = P 2y −
(
1 +

r

κ2
− β r

κ2

)
Py − β

r

κ2
,

0 = P 2y −
(
1 +

0.02125

0.12752
− 0.990.02125

0.12752

)
Py − 0.99

0.02125

0.12752
,

Py =
1

2

[

1 +
r

κ2
− β r

κ2
+

√(
1 +

r

κ2
− β r

κ2

)2
+ 4β

r

κ2

]

= 1.751 8 ,

where Fπ is computed knowing Pπ.

Fy = −
(
R+βB

′

yPyBy

)
−1

βB′yPyAyy.

Fπ =
−κ
β
Pπ

r + κ2

β
Pπ
=

−0.1275
0.99

1.751 8

0.02125 + 0.12752

0.99
1.751 8

= 4. 510 8.

In the scalar case, other formulas are available:

Fπ =
κ

r
(Pπ − 1) =

1− βλ
κ

=
κ

r

(
λ

1− λ

)
= 4. 510 8,

where λ is equal to:

λ =
1− κFπ
β

=
1− 0.1275 · 4. 510 8

0.99
= 0.42916

λ = 1− 1

Pπ
=
1

2

(
1 +

1

β
+
κ2

βr

)
−

√
1

4

(
1 +

1

β

κ2

βr

)2
− 1

β



Pz solves the matrix Sylvester equation knowing Pπ and Fπ or Pπ and λ:

0 = −Pz +Qyz + β (Ayy +ByFy)
′
PyAyz + β (Ayy +ByFy)

′
PzAzz.

0 = −Pu + β
(
1

β
− κ
β
Fπ

)
Pπ

(
− 1
β

)
+ β

(
1

β
− κ
β
Fπ

)
Puρ,

P−1π Pz =
−1−κFπ

β

1− (1− κFπ) ρ
=

−λ
1− βρλ =

−0.42916
1− 0.99 · 0.8 · 0.42916 = −0.650 14.

Fz is computed knowing P
−1
π Pz and Fπ or λ and Fπ:

Fz =
(
R+βB

′

yPyBy

)
−1

βB′y (PyAyz +PzAzz) .

Fz =
Pπ

−1

β
+ ρPz

Pπ
1

β

Fπ =
(
−1 + βρP−1π Pz

)
Fπ =

−1
1− βρλFπ,

Fz =
−1

1− 0.99 · 0.8 · 0.42916Fπ = −1. 514 9 · 4. 510 8 = −6.8334.

Step 2: The natural boundary condition γ0 = 0 minimizes the loss function with
respect to inflation at the initial date. The optimal initial anchor includes the term
−P−1π Pzz0:

γ0 = Pππ0 + Pzz0 = 0⇒ π∗0 = −P−1π Pzz0 = 0.650 14 · z0 =
λ

1− βρλz0.

Taking into account the optimal policy rule at the initial date:

x∗0 = Fππ
∗

0 + Fzz0 =
(
−FπP−1π Pz + Fz

)
z0 = −

κ

r

λ

1− βλρz0,

x∗0 = (4. 510 8 · 0.650 14− 6. 833 4) z0 = −3. 9007 · z0.

One has also:

π∗0 =
−P−1π Pz

−FπP−1π Pz + Fz
x∗0 = −

r

κ
x∗0 = −

1

6
x∗0.

Step 3: Impulse response functions are given by:

(
Etπt+1
zt+1

)
=

(
λ −1−κFz

β

0 ρ

)(
πt
zt

)
+

(
0
1

)
εt,

xt = Fππt + Fzzt and π0 =
λ

1− βρλz0, z0 given.

With numerical values for expected impulse response functions:
Impulse response functions following z0 Policy rule(
πt
zt

)
=

(
0.42916 −0.13004
0 0.8

)t(
0.65
1

)
z0 +

(
0
1

)
εt xt = 4.51πt − 6.83zt

Step 4: The vector auto-regressive model of the two observable variables (inflation



and output gap) is given by a change of the vector basis:






(
πt
xt

)
=M−1

(
πt
zt

)
withM−1 =

(
1 0

4.5108 −6.8334

)
, M =

(
1 0

0.66011 −0.14634

)

zt = −F−1z Fππt + F
−1
z xt = 0.66011 · πt − 0.14634 · xt(

Etπt+1
xt+1

)
=M−1

(
λ −1−κFz

β

0 ρ

)
M

(
πt
xt

)
+M−1

(
0
1

)
εt

(
Etπt+1
xt+1

)
=

(
0.34332 0.01903
−2.0600 0.88584

)(
πt
xt

)
+

(
0

−6.8334

)
εt

x∗0 = (−FπP−1π Pz + Fz) z0 = −3. 9007 · z0 with z0 given

,

where the transition matrix is computed by:

(
1 0

4.5108 −6. 8334

)(
0.42916 −0.13004
0 0.8

)(
1.0 0

0.660 11 −0.14634

)
..

Step 3 or step 4 provide identical numbers to the numbers used for making the dia-
grams of the impulse response functions of inflation, output gap and the cost-push shock
by Gali (2015), chapter 5.

4 Conclusion

The present article presented an algorithm for solving Ramsey optimal policy that can
be used to map models into a VAR representation which in itself can be utilized for
the estimation and interpretation of the outcome of such an estimation as well as for
the discussions of identification. Chatelain and Ralf (2017) estimate this vector auto-
regressive representation for a new-Keynesian Phillips curve transmission mechanism.
Chatelain and Ralf (2019) use this algorithm for the new-Keynesian Phillips curve and
the consumption Euler equation as a monetary policy transmission mechanism.
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