
   

 

 

 

Volume 37, Issue 2

 

Fractal analysis revisited: The case of the US industrial sector stocks

 

Taro Ikeda 

Graduate School of Economics, Kobe University

Abstract
In contrast to earlier studies of long memories, this paper indicates that most of the US industrial sector stocks have

the long memories when we consider the structural changes for the Hurst exponents.
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1 Introduction

Fractal geometry has a concern with a long memory property of time-series by a power law
distribution. In this methodology, a wider degree of autocorrelations than the unitroot
process (random walk) can be considered. In this respect, the fractal geometry is a
method to detect generalized autocorrelations more than the unitroot process.

The generalization of the random walk model with the fractal geometry implies that
the efficient market hypothesis is not valid anymore if the autocorrelation of asset price is
higher than the unitroot process. This is because an independence among the sequence
of the past shocks on the current price is destroyed by the higher order autocorrelations
of the fractal series.

By using spectral regressions, Barkoulas and Baum (1996) have suggested that the
US aggregate and industrial sector stock prices seem not to have the long memories.
However in contrast to them, we insist that most of the US industrial sector stocks
have long memories when we consider the structural breaks for the estimated Hurst
exponents.123 This result implies the failure of the efficient market hypothesis in the
recent US industrial sector stocks.

This paper proceeds as follows. Section 2 introduces a fractal Brownian motion and
R/S analysis to detect the long memories of the stock prices empirically. Section 3
presents obtained results. Section 4 concludes.

2 Methodology

This section introduces a fractional Brownian motion which provides mathematical back-
grounds of the fractal geometry, and then the Hurst’s R/S analysis to determine the
generalized autocorrelations of stock prices.

2.1 A fractional Brownian motion

A fractional Brownian motion (fBm) of the fractal geometry is a key concept to generalize
the ordinary Brownian motion (random walk). To reveal the relationship between the
two, we denote the difference of the fractional Brownian motion BH(t) for any two times
t and t0 as |BH(t)−BH(t0)|. Then, the second moment of the difference can be described
as:

⟨|BH(t)− BH(t0)|
2⟩ ∝ |t− t0|

2H , (1)

1Onali and Goddard (2011) find the long range dependence of stock market indexes of Itary and
Czech republic. Also, Goddard and Onali (2014) develop an empirical test for self-affinity of stock price
returns.

2Also, Chimanga and Mlambo (2014) indicate that the Johannesburg stock exchange index exhibits
the long rage dependence and suggest that the stock market indexes of emerging countries are more
autocorrelated than those of developed countries.

3In addition, see Booth et al. (1982) for the case of exchange rates of developed European countries.



where ⟨⟩ is an ensemble average, and H is the Hurst exponent which takes a value 1/2 for
the random walk case.4 It is relevant that the variance of the ordinary Brownian motion
is the special case of the fBm’s variance (1).

Also, note that the variance of the fBm goes to infinity with t, and the rate is faster
than the one of the random walk in the case 1/2 < H < 1.

2.2 The Hurst’s R/S analysis

The R/S analysis has been proposed by Hurst (1955) in order to determine the generalized
degree of autocorrelations for any time-series.

We describe the increments of time-series in logarithms as x(t) ∈
(

x(1), ..., x(T )
)

, and
calculate the ensemble average over window-size τ as:

⟨xt|τ⟩ =
1

τ

τl
∑

τ(l−1)+1

x(t), (2)

for l = 1 : ceil(T/τ).
Then, we calculate the accumulated sum of dispersion of x(t) from the average as

follows:

x(t, τ) =
T
∑

t=1

(

x(t)− ⟨x(t)|τ⟩
)

. (3)

By subtracting the local averages from x(t), constant trends in the sample are excluded.
In addition, we calculate R(τ) of the max-min range over the window-size τ and S(τ)

of the standard deviations in each segment as follows:

R(τ) = max
τ(l−1)+1≤t≤τl

x(t, τ)− min
τ(l−1)+1≤t≤τl

x(t, τ), (4)

and

S(τ) =

√

√

√

√

1

τ

τl
∑

τ(l−1)+1

(

x(t)− ⟨x(t)⟩
)2
. (5)

Clearly, the range R is an increasing function for τ .
Finally, the R/S statistics is defined as a fraction of (4) and (5), which obeys the

power law distribution as:

Eτ

(

R(τ)/S(τ)
)

∝ τH , (6)

where H is the Hurst exponent as already introduced in Section 2.1.
Using Hurst’sH, we can categorize autocorrelations of any time-series into three cases.

First, the case 0 < H < 1/2 corresponds to antipersistence or short correlation, where

4The variance equation of the random walk takes well-known formulation as:

⟨|BH(t)−BH(t0)|
2⟩ ∝ |t− t0|.



the time-series increasing today must decrease tomorrow. Second, the case H = 1/2
implies the random walk as frequently used in financial market analysis, implying the
shock terms of the series are not mutually interdependent over time. Third, 1/2 < H < 1
denotes long dependence or long memory where the past shocks do not disappear and do
affect for a very long time on the current series, and therefore trend-reinforcing.5

3 Empirical results

This section estimates the statistical Hurst exponents for the US industrial sector stock
prices. To this end, we utilize the American sector stock indexes categorized by Dow
Jones. All data are weekly-frequency and obtained from Thomson Reuters Datastream.6

Here, we implement 5555 times bootstrapping to construct confidence intervals for
estimated H, since the variance for H goes to infinity in the case 1/2 < H < 1.

3.1 Benchmark results

Table 1 provides the statistical Hurst exponents for the US industrial sector stocks.
Almost all point estimates of the exponents exceed the threshold of 0.50. Also, the
long memories are strongly significant in 7/15 industries: Auto and Parts, Consumer
Goods, Consumer Services, Media, Real Estate, Technology, Telecommunications. This
is because the lower confidence intervals for the Hurst exponents of these stocks take
values more than 0.50.7

Figure 1 confirms these results. In most of the figures, the fitted lines replicated by
the bootstrapping contain realized R/S values, which grantees an appropriateness for
our regressions. However, there are only two exceptions: Farming and Fishing and Oil
and Gas. These realized values do not fall within the bootstrapped lines, implying a
possibility of structural changes for H.

3.2 Structural changes for the Hurst exponents

This section examines whether the time-dependent structural changes occurs on the stock
price indexes by sequential estimations of H.8

Figure 2 suggests the structural changes ofH for all sectors. These results are amazing
in the sense that most of the sectors (11/15 sectors) exhibit the long memories.

In sum, the recent US stock markets by industrial sectors are not efficient when we
revisit the fractal market hypothesis by Benoit B. Mandelbrot.

5See Feder (1988, Chap. 9) for this classifications.
6All results are robust even if we use the daily observations (see Supplemental Appendix).
7The result of Real Estate is consistent with Ikeda (2016), who suggests the fractality of the US stock

market.
8See Sibbertsen (2004) for econometric assessments for the structural breaks of the long range de-

pendence.



4 Conclusion

This paper found that most of the US industrial sector stocks are fractal, and therefore
have long memories.
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Figures and Tables

Table 1: Hurst exponents by industrial sectors

No. Name Hurst exponent Lower Upper

1 The Americas Auto and Parts 0.64570 0.54456 0.75352

2 The Americas Basic Resources 0.50475 0.46536 0.60480

3 The Americas Consumer Goods 0.60409 0.53906 0.65110

4 The Americas Consumer Services 0.62969 0.58543 0.71856

5 The Americas Farming and Fishing 0.49060 0.39037 0.53957

6 The Americas Financial Services 0.56600 0.47879 0.63285

7 The Americas Food and Beverages 0.56925 0.48216 0.60622

8 The Americas Media 0.68863 0.55370 0.83186

9 The Americas Oil and Gas 0.49178 0.41657 0.50922

10 The Americas Real Estate 0.57230 0.53531 0.67868

11 The Americas Retail 0.57423 0.47975 0.59372

12 The Americas Technology 0.68715 0.57431 0.75518

13 The Americas Telecommunications 0.65490 0.52544 0.74653

14 The Americas Travel and Leisure 0.52539 0.41885 0.58782

15 The Americas Utilities 0.52157 0.45394 0.62740

Note: ‘Lower’ and ‘Upper’ denote bootstrapped 95% confidence intervals.



Figure 1: Bootstrapped regressions

Note: Gray lines are generated by regressions using 5555 bootstrapping.





Figure 2: Sequential estimation of H

Note: Shaded area denotes 95% confidence interval for H.




