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uncertainty.
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1. Introduction 

 
Since classical Merton’s (1969) and (1971) papers, the problem of an infinitely-lived, 
rational consumer maximizing his/her lifetime discounted utility when the dynamics of the 
asset returns are shaped with a diffusion process has been widely studied. There is, in the 
mathematical finance literature, a very long list of extensions in several directions of 
Merton’s seminal proposal. Recently, much of latest research aims at modeling asset prices 
with Markov modulated process; see, for instance: Bäuerle and Rieder (2004) determining 
the optimal portfolio allocations when the stock price depends on an external time-
homogeneous and finite Markov chain; Sotomayor and Cadenillas (2009) finding explicit 
solutions for the optimal investment and consumption decisions with a HARA utility 
function when asset prices are driven by standard Brownian motions combined with a 
regime switching; and Fei (2013) that provides optimal consumption and portfolio 
allocation when the inflation rate is driven by a Markov-switching process. Approaches to 
consumption and portfolio optimal decisions for regime switching models have also been 
broadly studied; for instance: Stockbridge (2002) providing a mathematical programming 
formulation of the portfolio optimization problem; Zhang and Yin (2004) offering nearly 
optimal strategies in a financial market, and Sass and Haussmann (2004) solving 
numerically the problem of maximizing the investor’s expected utility of terminal wealth 
under a finite time horizon.1

 In this research, we extend Vallejo-Jiménez et al. (2015) and Soriano-Morales et al. 
(2015) in various directions.
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 It is worth stating a list of what models in the specialized literature are already 
included in our proposal and also distinguishing what is innovative in it. To do this, we 
present Table 1. Of course, this table is not intended to be exhaustive at all. 

 The main contribution of this paper is to provide analytical 
solution for the utility maximization problem of a rational consumer-investor when the 
asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian 
motion with multiple Poisson jumps. In this sense, jumps are associated with sudden and 
unexpected leaps of the price itself, the sector, the news, the related market, etc. The 
Markov chain is related with the different combinations of the physical trend, the 
instantaneous volatility and the interest rate, all of them taking low, mid, and high levels, 
which enable us to model structural changes regarding these time and state dependent 
variables. 

 

                                                           
1 To the extent of our knowledge, regime switching models were initially proposed by Hamilton (1989) to 
model stock return time series; however, this approach brings new difficulties due to the additional source of 
uncertainty affecting the completeness of the market. Moreover, the firsts in dealing with asset prices driven 
by mixed jump-diffusion processes were: Cox and Ross (1976), Ball and Torous (1985), and Page and 
Sanders (1986). More recent work on jump-diffusion process can be found in Aït-Sahalia et al. (2009) and 
Lui et al. (2005). Fractional Brownian motion is a natural extension of Brownian motion (Mandelbrot, 1968) 
and its statistical properties are widely used in financial modeling; see, e.g., Bender et al. (2011) and Hu and 
Øksendal (2003).  
2  Optimal portfolio selection has also been studied in Biagini and Øksendal (2003), Czichowsky and 
Schachermayer  (2015), Hu and Øksendal. (2003), Hu et al. (2003), Jumarie (2005), Karatzas et al. (1987), 
He and Pearson (1991), Karatzas et al. (1991), Cvitani ánd Karatzas (1996), Cvitani ́ and Wang (2001), 
Venegas-Martínez (2001), (2005) and (2009), Venegas-Martínez and González-Aréchiga (2000), and 
Zariphopoulou (2001), (1999) and (1992).   
 



Table 1. A summary of models included in our proposal and the proposed extensions 

 

Optimal portfolio when the stock price is driven by: 
 

Jump-diffusion process Czichowsky and Schachermayer (2015), Jin 
and Zhang (2012), Aït-Sahalia et al. (2009), 
Venegas-Martínez (2000) and (2001), 
Jeanblanc-Picqué and Pontier (1990).    

 
Time-homogeneous Markov chain 
(regime-switching) 

Soriano-Morales et al. (2015), Fei  (2014), 
Zhou and Yin (2014), Wu and Li (2011), 
Elliott et al. (2010), Sotomayor and Cadenillas 
(2009), Çakmak and Özekici (2006), Rieder 
and Bäuerle (2005), and Bäuerle and Rieder 
(2004), Sass  (2004), Sass and Haussmann 
(2004), Stockbridge (2002), and  Elliot (2002). 
 

Time-inhomogeneous Markov 
chain (regime-switching) 

Vallejo-Jiménez et al. (2015), and Rudiger and 
Backhau (2008). 
 

Fractional Brownian motion 
modulated by a Time-
homogeneous finite Markov chain 

Fei and Shu-Juan (2012). 

Markov regime switching 
combined with jump-diffusion 
processes 

Yu  (2014), and Elghanjaoui and Karlsen 
(2012).  

Fractional Brownian modulated by 
a time-inhomogeneous Markov 
chain combined with multiple 
jump-diffusion processes 

This paper (2017). 

Source: Authors’ own elaboration. 

 
 This research has the following organization: in section 2, we setup the 
mathematical framework of the proposed model; through section 3, we provide the 
analytical solution of optimal consumption and asset allocation; in section 4 we revisit 
some special cases; finally, in section 5, we present the conclusion and acknowledge some 
limitations. 
 

2. The setting of the model 

 
In considering the problem of determining optimal portfolio and consumption decisions, it 
is, usually, assumed that the consumer has access to a bond and a risky asset. The 
randomness in the risky asset returns requires a filtered probability space (or stochastic 

basis) ( , , { ,0 }, )t T PΩ = ≤ ≤
t

F FF  where Ω  is a sample space, F  is a σ -algebra on 

Ω , P  is a probability measure on ( , ),Ω F  and 
t

F  is a filtration containing all available 



information of the market until time t . The bond price process, tb , evolves deterministically 

according to 
d

d=t
i

t

b
r t

b
.            (1) 

The stock price process, tS , is driven by the following stochastic differential equation, 

namely, a time-inhomogeneous Markov modulated fractional Brownian motion with 
multiple Poisson jumps 

,
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where H
tB  stands for the fractional Brownian motion as a Gaussian zero-mean non-

stationary stochastic process indexed by a single scalar parameter (0,1)∈H  (Hurst 

parameter). The usual Brownian motion satisfies 1 / 2H = . It is well known that a fractional 
market with Hurst parameter 1 / 2H >  allows arbitrage (Bender et al. 2011). Hence, this 

investigation mainly focuses on 1 / 2H ≤ . The covariance of H
tB  shows that it is non 

stationary since 

( )
2

2 2 2
E[ ]

2

H H HH H
t sB B t s t s

σ
= + − − . 

This, clearly, shows that 
22Var[ ]

HH
tB tσ= . Here ( , , )µ σi i ir  is a continuous time Markov 

chain changing over time with a finite state space E  and a matrix ,( ( ))ij i j EQ q t ∈=  having 

time dependent transition probabilities under P  with respect to F.  In what follows, it is 

assumed that , , :i i ir E Rµ σ +→ , and , , 0i i irµ σ > for all i E∈ , allowing regime switching 

in ( , , )µ σi i ir . Consider now a Poisson jump process ,d t kN  with intensity φ k. That is,  

,{one jump during d } {d 1} dt k kP t P N tφ= = =  

and 

.{more than one jump during d } {d 1} (d )t kP t P N o t= > = , 

 so that 

,{no jump during d } {d 0} 1 dt (d )t k kP t P N o tφ= = = − + . 

where, as usual, (d ) / dt 0o t →  as d 0.t →  Additionally, it is required that

,Cov (d ,d ) 0H
t k tN B =  and 

1 2, ,Cov (d ,d ) 0t k t kN N =  for all 1 2 1 2, , ;k k k n k k≤ ≠ . It is also, usually, 

convenient to redefine the process d ,t kN  in such a way that 

,
1 1

d
d d d

n n
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k kt

S
t B N

S
µ φ ν σ ν
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 = + + + 
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where ,d t kN has the same probability distribution but ,E[d ] 0t kN = . From now on, we 

denote by 
,t iθ  the proportion of wealth not intended for consumption that is invested in the 



asset at time t . The process 
,t iθ  is called a portfolio strategy, and we assume that 2

,

0

ds
T

s iθ < ∞∫  

almost surely. Let us denote by ta  the real wealth process under a self-financing 

assumption. Thus, real wealth is driven by the following stochastic differential equation 

, ,

d d
d (1 ) dt t

t t t i t t i t
t t

b S
a a a c

b S
θ θ= − + −         (3) 

with 0 0a > . Consider a utility function :[0, )U ∞ → that satisfies Inada’s conditions. The 

consumer wishes to maximize the total expected discounted utility: 

0

0

E ( ) d |t
tu c e tρ

∞
− 

 
 
∫ F          (4) 

where ρ  is the subjective discount rate. Under the previous assumptions, equations (1)-(2) 

and 

d dt tc c t=            (5) 

are substituted in (3) to obtain consumer’s budget constraint in such way that 

, , , ,
1 1

d ( ) d d d
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k kt

c
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The market risk premium, adjusted by volatility, is denoted by 

1

µ φ ν
λ

σ
=

− +
=

∑
n

i i k k
k

i
i
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          (7) 

Hence, from (4), (6), and (7), we have that the lifetime utility maximization problem is 
given by 

0

0
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   (8) 

In order to solve problem (8), we define the value function 
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In this case, the stochastic differential satisfies 
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where  
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1
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By substituting (11) and (12) in (10), and simplifying, it is obtained 
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If tc and ,θt i are both optimal, then                   
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The proposed candidate for solving the above equation is 

( ) 0 1, , ( ) ( , )t t t
t tS a t i e u a e g t i eρ ρ ρβ β− − −= + +                 (15) 

By substituting (15) in (14), and simplifying, it is obtained that 
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             (16) 

After taking partial derivatives of (16) with respect to tc  and ,t i , it follows that   

1'( ) '( )t tu c u aβ=                  (17.a) 
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Solving for ,t i in (17.b), it follows 
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where λi is now defined as the risk premium in the state i , thus /i iλ σ  should be renamed 

as the market risk premium adjusted by variance, and ''( ) / '( )t t tu a a u a−  stands for the 

relative degree of risk aversion; this being the elasticity of the marginal utility of wealth. 
Observe that (18) differs from standard results, for example, from the classic mean-variance 
approach, because the optimal proportion, ,t i ,  changes with t since the variance is now 

modified by the factor 2 1Ht  . The dependence of ,t i  on the state i is due to the regime-

switching. 
 

3. Analytic solution for logarithmic utility 
 

Considering logarithmic utility, ( ) ln ()u c c= , in (17.a) and (17.b), it follows that a constant 

proportion 
11 / β of wealth is always consumed, i.e., 

1/t tc a β=                     (19) 

and 
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In order to obtain a closed-form solution of ,t i  in the above equation, the size of all jumps 

will be fixed, equal to 0 0,   and intensities will be modified to compensate the jump 

change for each k. That is, if the original size is less than 0 ,  then the intensity will increase 

and vice versa. To do this redefine *φk  for each k  as  *
0/ ,k k kφ ν φ ν=  then 
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If * 0φ =k , then , /t i i iθ λ σ= . On the other hand, by substituting (19) in (16), it is obtained 

that 
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This equation must hold for all ta , then 

1 1 /β ρ=                     (23) 



Hence, the optimal consumption rule satisfies 

t tc aρ=                     (24) 

By substituting (23) in (22), it is obtained that 
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Now, observe that there are terms in (25) that do not depend on the state, then the equation 
can be split in two parts both equal to zero: 
Part 1 
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Solving (26) for 0 , it follows that 
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where ( )ijq t  and ( , )g t i  are integrable for every interval in [0, )∞ , and ( )ik t is integrable for 

[0, )t∈ ∞ . An alternative form for writing ( , )g t i  is given by 
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The partial derivative of (30) with respect to t leads to 
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Substituting and rearranging ( , )g t i  in (31), leads to 
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Hence, function in (29) fulfills necessary conditions. And with this, we have provided 
closed-form solutions for the allocation problem of an infinitely-lived rational consumer-
investor, equipped with logarithmic utility, and assuming that the asset price is guided by a 
time-inhomogeneous Markov modulated fractional Brownian motion with multiple Poisson 
jumps. 

 

4. Revisiting some special cases 

 
The particular case for the optimal proportion tθ  when the stock price is driven by a mixed 

jump-diffusion process is obtained from equation (21) as 

                                           
2( ) 4

2t

λ σ λ σ
θ

σ
φ′ ′− + + +

=  

where / .σ σ ν′ =  If 0,φ =  then  / .tθ λ σ=  Compare this result with that from Téllez-León 

et al. (2011) and Venegas-Martínez and Rodríguez-Nava (2010).3

 Next, we characterize optimal decisions when the asset price is driven by a time-
inhomogeneous Markov modulated Brownian motion without Poisson jumps. Notice that 
necessary conditions for a maximum lead to 
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= .                                                      (32) 

We observe that tθ does not depend on ,t it only depends on the state i , thus it is 

convenient to change notation to /i ii λ σθ = . Hence, from (32), we get 
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Equation (33) holds for any value of ta , then 11 0ρβ− =  or 1
1β ρ −= , thus, .t tc aρ=  

Moreover, 
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Now, it is clear that there is a part of the equation that does not depend on the state i , then 
the equation can be split in two parts which are equal to zero. That is, 

Part 1:    
00 ln( ) 1

r ρ ρ β
ρ

= + − −                  (35) 

                                                           
3 There is an extensive literature on the modeling of jumps in the underlying asset in pricing contingent 
claims; see, for example: Cox y Ross (1976), Ball y Torous (1985), Page y Sanders (1986), Cao (2001) and 
Chandrasekhar Reddy Gukhal (2004). 
 



Part 2:     ( ) ( )2( , ) 1
0 ( , ) ( ) , ,
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After solving (35) for 0 ,β   we get 
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In order to solve (36), we propose as a candidate of solution 
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The partial derivative of (38) with respect to t  leads to 
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By substituting ( , )g t i  in the above expression, we have 
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Hence, the proposed function fulfills the conditions to solve analytically the stated decision 
making problem.  
 We now study a specific case of a time-dependent Markov chain with transition 

probabilities that are stabilized as .t →∞  In particular, consider a two-state set E  with 
transition probabilities defined by 

1

11( ) 1 e ,tq t ξ−= −  1

12( ) e tq t ξ−= ,  2

21( ) e tq t ξ−=  and   2

22( ) 1 e tq t ξ−= −                (41) 

with 0, 1, 2.i iξ > = Notice that the transition probabilities are stabilized at rate iξ as 

time grows, specifically 11 22 12 21lim ( ) lim ( ) 1 and lim ( ) lim ( ) 0.
t t t t

q t q t q t q t
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= = = =  

In this case, the proposed function ( , )g t i  is given by 
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The partial derivative of (42) with respect to t leads to 
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By substituting ( , )g t i  in (42), the above equation leads to 
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Therefore, the proposed candidate fulfills all the required conditions to solve the 
analytically the stated utility maximization problem. 
 Finally, we examine a time-dependent Markov chain with transition probabilities 
that do not have defined periods. To do that, we consider the logistic mapping 

1 4 (1 )n nnx x x+ = − ,                   (45) 

which has a closed-form solution 
           2 1 1

0sin (2 cos (1 2 ))n
nx x− −= − .                 (46) 

The above equation is a mapping taking values in [0,1] , which is useful for providing no 

periods. In particular, consider a two-state set E  with transition probabilities defined by: 
2

11 1( ) 1 sin (2 )tq t ξ= − , 2
12 1( ) sin (2 )tq t ξ= , 2

21 2( ) sin (2 )tq t ξ= ,  and 22( )q t =
2

21 sin (2 )tξ= − with speed parameters (0,1), 1,2.i iξ ∈ =  In this case, the proposed 

function g( , )t i  is given by 
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The partial derivative of (47) with respect to t leads to 
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After substituting ( , )g t i  in (48), and rearranging terms, we obtain 
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Hence, the proposed function ( , )g t i  accomplishes all required conditions. Compare the 

above result with those from Vallejo-Jiménez et al. (2015). All the analyzed special cases 
highlight the benefits of the additional proposed structure, which substantially improves the 
understanding portfolio behavior. 
 

5. Conclusions 
 

The addition of both a time-inhomogeneous Markov chain and multiple Poisson jumps 
generalize previous results regarding optimal consumption and portfolio rules under 
uncertain environments. Furthermore, all desirable’s statistical properties of the fractional 
Brownian motion widely used in financial modeling are now included in our proposal. 
Finally, in the developed model multiple jumps can be associated with sudden and 
unexpected leaps of the price itself, the sector, the news, the related market, etc. Needles to 
say, all of this provides a much richer and realistic environment to the consumer’s decision 
making problem in risky environments. 
 We have also provided a summary of all the models included in our proposal and 
the extensions developed in this research. Several special cases were revisited and 
discussed with respect to the benefits of the additional structure, which improves the 
understanding of portfolio dynamics behavior. 



 A limitation of our proposal is that in order to obtain closed-form solutions it was 
assumed that the sizes of all jumps are fixed; however, all the parameter intensities are 
modified to compensate the jump size change. More work in this route will be done in the 
future. Of course, the developed model also enables us to calibrate, in future research, 
structural changes related to the physical trend, the instantaneous volatility and the interest 
rate. 
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