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1. Introduction

The agricultural industry is highly dependent on the climate, which may lead to un-
forecastable price variation. Jumps and time-varying volatilities are found to be sig-
nificant in agricultural commodities price returns. Within this framework, the failure
of forecasting risk might produces systemic risk given the role of agricultural coopera-
tives in the physical commodities markets. This paper discusses a Double-exponential
Jump model and its application to the risk measure Value-at-Risk (VaR).
A wide range of literature has developed times series models to simulate the com-
modity price dynamics and to capture the accurate commodity price behaviour such
as skewness right, excess kurtosis and the volatility behaviour. These features may be
considered in the stochastic process, including mean reversion, time-varying volatil-
ity, discontinuity, etc.
It is stylized empirical evidence that agricultural and other commodity prices re-
turns exhibit mean reversion especially in the competitive markets framework. The
Ornstein-Uhlenbeck model first discussed by Ornstein & Uhlenbec (1930) describes
the mean-reversion feature. Its application in commodity modelling can be seen, for
example, in Gibson & Schwartz (1990), Schwartz (1997) and Schwartz &Smith (2000)
Other empirical evidence on returns is revealed, such as excess kurtosis with not nor-
mally distributed. On the one hand, ARCH and GARCH models examine the time-
varying volatility. On the other hand, jump models could take into account the dis-
continuity of prices in the price modelling. Models belonging to this category are Beck
(2001), Bernard et al. (2008) and Hilliard & Reis (1998), etc. Among these, Kou (2002)
and Ramezani & Zeng (1998) propose a Double Exponential Jump model, which indi-
cates that the upward and downward jumps have independently exponential distribu-
tion. Some empirical works in the derivatives pricing models support that the double
exponential diffusionmodel outperforms the normal jump diffusionmodel (Ramezani
& Zeng, 2004). Nevertheless, there is not application of this model in the commodity
physical market. Using Double-Exponential Jump model deals with the problem that
commodity physical market is less liquid and probably have less frequent jumps than
other financial markets.
This paper provides the evidence with respect to the features of recent commodity
physical market and complements the existing literature by contributing an applica-
tion in the modelling wheat spot prices using double-exponential jump model. We
further apply this model in the risk measure of agricultural cooperatives. We organize
the remainder of the article as follows. Section 2 introduces the Double-Exponential
Jump model. Section 3 presents the data and estimation results. Section 4 gives an
application of model in risk measure VaR. Section 5 concludes.

2. Model specification

In this model, the log price is assumed to follow a Brownian motion with a mean-
reversion term, plus a compound Poisson process with jump sizes double exponen-
tially distributed (Kou, 2002; Ramezani & Zeng, 1998). Volatility is supposed to be
stochastic (GARCH). With Xt = ln(St), log prices and Vt = σ2

t , volatility:

dXt = k (µx −Xt)dt +σtdBt + JtdNt (1)

dVt = kv (µv −Vt)dt +σvVtdBvt (2)
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In equation (1) and (2), the Ornstein-Uhlenbeck process captures the mean-reversion
behaviour of returns. k denotes the rate that the log prices Xt return to a equilibrium
or a mean value µx; The volatility with GARCH behaviour is modelled as a mean-
reversion process. The Brownian motion Bt and Bvt , following Normal ∼ (0,dt) are
assumed to be independent. In the estimation, we can re-write Vt = ω +αε2t−1 + βVt−1
with εt−1 the error term at time t-1; ω > 0 et α ≥ 0,β ≥ 0; and α + β < 1 (stationary
condition). Transforming to the continuous form of GARCH, we have kv = 1 − α − β
and σv = α

√
2 (Nelson, 1990), where

ω

1−α − β measures the long-run average variance

per day by using the daily data here. α + β is the persistence of volatility.
The discontinuous component of the price process is described by a Poisson counterNt

in the equation (1), with intensity λ and jump size Jt . The intensity λ is the probability
that jump occurs, Prob (∆Nt = 1) = λdt and probability of no jump, Prob (∆Nt = 0) =
1−λdt.
The double exponential distribution of Jt is supposed to be independent of Bt and Bvt .
The double exponential distribution of Jt is:

fJt =

{
η1e
−η1Jt Probability = p (3)

η2e
η2Jt Probability = 1− p (4)

The probability p, is the probability that an upward jump occurs, and 1-p is the prob-
ability of a downward jump. The means of exponential random variables are 1/η1 and
−1/η2 for positive and negative jump sizes respectively. The jump size is not normally
distributed but has the leptokurtic feature. And the Double Exponent Jump model
(abbreviation DEJM will be in the rest of this paper) gives the feature of overreaction
and under-reaction to outside news and also the reaction to good or bad news.

Likelihood function
For the likelihood function, the density of Xt is simplified as a Bernoulli weighted sum
of normal and exponential density. The three sources of randomness, Bt ,Bvt and Nt ,
are assumed to be independent. Price processes are divided into two regimes: Jumps
happen with probability λ; No jumps with probability 1−λ.
Define a random variable Xt as a sum of independent normal (with mean µ and vari-
ance σ2) and exponential (with parameter δ) random variables. Its density function is:

g
(
X
′)
=
δ

2
e

δ

2

(
2µ+δσ2−2X ′

)

erf c

(
−µ+ δσ2 −X ′
√
2σ

)
, (5)

where the complementary error function erf c (x) =
2√
π

∫ ∞
x

e−s
2
ds

Then density function can be written also as:

g
(
X
′)
= δe

δ

2

(
2µ+δσ2−2X ′

)

Φ



X
′+µ−δσ2

σ


, with Φ (): Cumulative distribution CDF of stan-

dard normal variables.
The density function of Xt combined with a Bernoulli distribution in our case can be
calculated (see also Ramezani and Zeng (1998) and Kou (2002)):
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f (Xt) = λ

[
pη1e

σ2η21
2 e−(X(t)−(1−k)X(t−1)−kµx)η1Φ

(
− (X (t)− (1− k)X (t − 1) + kµx −Vtη1)√

Vt

)

+(1− p)η2e
σ2η22
2 e−(X(t)−(1−k)X(t−1)−kµx)η2Φ

(
(X (t)− (1− k)X (t − 1) + kµx −Vtη2)√

Vt

)]

+(1−λ) 1√
2π

e


−
(X (t)− (1− k)X (t − 1)− kµx)2

2Vt




(6)

The log likelihood function to be maximized is: L (P) =
∑T

t=1 ln [f (Xt)] with T the last
trading day of the sample.
Parameters P = (k,µk ,p,η1,η2,λ,ω,α,β) can be estimated by maximization of the like-
lihood function numerically. The initial parameters are chosen carefully since results
are highly dependent on the initial values. Initial values for mean part is obtained
with empirical observation of mean return and averaged days of returning to the mean
level. Starting value for volatility part is based on the resulting parameters of single
GARCH model on return series. Initial value for jump part is based on empirical rea-
soning on the number and size of jumps1. We choose the initial values of parameters
that ensure the estimation to have a convergence to a similar and stable estimates.

3. Model estimation and diagnostics check
3.1 Data

We consider the prices of wheat delivered in Rouen (France) from 2004 to 2014 in
figure 1. The estimation are conducted for different harvest periods 2. Prior to 2004,
the wheat price is found at the lowest level, which corresponds to the recession in
the USA. The prices attain a peak of 292 Euro/ton in mid-2007. From January 2006 to
April 2008, the prices of wheat increase about 159%, and then decrease abruptly to the
long-term level in the second semester of 2008. Meanwhile, the prices in the period
of 2007/2008 become volatile compared to the previous harvest. Another peak is in
2010/2011 where prices are also volatile and a higher price level is maintained in the
next harvest of 2011/2012, when Russia banned the wheat exportation due to an ex-
tremely dry climate. Descriptive statistics for the log return (defined as the difference
of log prices of two opening days) is given in Table I. The return series are not nor-
mally distributed, as they have non-zero skewness and positive excess kurtosis. The
normality hypothesis on the returns series is rejected for all harvests by Kolmogorov-
Smirnov test, which confirms results on the observation of Kurtosis and Skewness.

1We define firstly different thresholds on the return dynamics, for example: mean ± 1 standard
deviation; ± 1.2 standard deviation. The price returns exceeding the thresholds are considered as a
jump occurring. We have compared the results of different initial values and retained those that give
reasonable and stable estimates of all other parameters. The final initial parameters that maximize the
likelihood function are preserved.

2One harvest is from July to June the next year. As we consider that wheat in different harvests are
distinct products.
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3.2 Model estimation

The Table II gives the results from the maximum likelihood function. All the esti-
mated parameters are significant, with the level at least 10%. The standard errors
reported are calculated using the Hessian matrix.
Prices in the harvest during 2007/2008 and 2008/2009 revert to equilibrium more
slowly than in other years, and also for another period, 2004/2005, which may be with
respect to the lower storage pressure in the previous harvest. Regarding the equilib-
rium level of prices, peaks are found in 2007/2008, 2010/2011 and 2012/2013. The
2007/2008 harvest coincides with the crisis from the financial industry with the fact
of financialization of the commodity market. And also the higher volatility is found
in 2004/2005, 2007/2008 and 2010/2011.
Jumps have happened more frequently since 2006. Prices increase from 2006 and os-
cillate along a high level during 2007/2008. Tow kinds of cases can be distinguished
according to the results: firstly, the harvest of 2004/2005 is categorized by jump with
large size and lower frequency. Secondly, in the years of 2006/2008 and 2010/2011,
the jumps happen more frequently but have lower value. The results of the jumps
are confirmed with those of mean reversion and volatility: In the higher volatile pe-
riod, the jumps are more frequent and prices deviate to the market equilibrium much
longer than in other periods.

3.3 Diagnostic checks

In this section, to examine the impact of various features in the calibration of Double-
exponential Jump model, we also fitted the following three more restrictive models
to prices returns: ARCH model with stochastic volatility (without mean reversion);
Mean-reversion model with stochastic volatility (without jump term); and Jump dif-
fusion model with constant volatility (without stochastic volatility).3

Likelihood ratio is defined as LR = −2[L (p̂,X)−L (P,X)], with p̂ the parameters esti-
mated by restricted models, P the parameters estimated by the complete model, and X
the log prices. LR is Chi-square distributed with k degree of freedom (k is the number
of restrictions).
According to the likelihood ratio test in table III, the null hypothesis that the con-
strainedmodel fits sample data better than the unconstrainedmodel is rejected. These
models do not outperform the baseline DEJM.
On the basis of the results using DEJM, it reveals that it is effective to investigate the
wheat prices by the complete model according to the likelihood ratio test.

4. Application in risk measure of agricultural cooperatives

In this section, we turn to apply the estimated model in the risk measure of agricul-
tural cooperatives. Cooperatives play an important intermediary role in the agricul-
tural industry or agribusiness. As Declerck and Mauget (2008) indicates: “The job of
agricultural cooperatives is to collect agricultural commodities from farmers and com-
mercialize these commodities in the market.” In France, cooperatives usually pay an
"average price” to the members. This payment contract can be explained as: Coopera-
tives pay the members for an advance price when the contract is established between

3For brevity, the estimation results for these models are not presented
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them. At the end of a harvest, cooperatives may pay for a complement price (differ-
ence between average price and advance price) when the average price is higher than
the advance price; cooperatives do not need to pay for a complement price if average
price is lower than the advance price.
We discuss the Value-at-Risk (VaR), a measure of the potential loss given a probabil-
ity within a period (one to ten days); In this paper, we consider the 1% VaR with a
horizon of 10 trading days. VaR is actually a quantile of portfolio returns, which is a
risk measurement widely used by financial institutions and the agricultural industry.
This section focus on the calculation of VaR of the last three periods from 2011 to
2014 for simplicity. And also these three periods involve different jump and volatility
behaviors from previous estimation. In the 2011/2012 harvest, one of the volatile pe-
riodes, jumps happens frequently with large size. The frequently jumps continue in
the next harvest of 2012/2013. While the 2013/2014 is one of the quite period with
less frequent jumps happens. An appropriate VaR applied in agricultural cooperatives
should deal well with the trade-off between sufficient risk prevision and not overusing
resources. We are going to compare two VaRs under different prices process: DEJM
and Black-Scholes 4 in different portfolios. Portfolios try to mime cooperatives’ activ-
ities, including contract between farmers and cooperatives, and contract of hedging.

4.1 Portfolio specification

In the first portfolio, cooperatives buy wheat from farmers and sign a contract to guar-
antee for farmers that selling prices are not smaller than the average prices of the year.
This contract can be considered as short Asian Call. Moreover, cooperatives are as-
sumed not to hedge risk; thus, they face the risk when price decreases. Meanwhile,
cooperatives sell the same proportion of wheat every day. Following this, in the sec-
ond portfolio besides the guaranteeing contract and the selling activity, cooperatives
long a put for hedging risk. Profit and loss of two portfolios are given in Table IV.
The specification of Asian call Y (guaranteeing contract) is: Maturity T for one year/one
harvest; K strike price is supposed to be 190 Euros, which is the advanced prices to
pay for farmers.

4.2 Backtesting

Backtesting techniques are needed for testing the performance of Normal-VaR and
Jump-VaR. One test is based on the number of exceptions. Kupiec’s test is to deter-
mine whether the observed frequency of exceptions is consistent with the frequency
of expected exceptions according to the VaR model and chosen confidence. The LR
test statistic is:

LR = −2ln
(
(1− p̂)n−x p̂x
(1− p)n−x px

)
∽ X2 (1) , (7)

With p̂ the VaR stated probability level; p the exception frequency; x
n , n the total trad-

ing days and x the number of exceptions. The null hypothesis under this test is that
the realised number of exceptions is equal to the theoretical number of exceptions de-
fined in the VaR model and model is efficient.

4Commodities price returns St have a lognormal distribution with constant drift and volatility:

St = St−1exp
([
µ− 0.5σ2

]
1
T +σ 1

T Zt

)
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A larger difference between VaR and real Profit/Loss in the case of exception will be
a disaster for cooperatives. For this purpose, we calculate a Root-Mean-Square Devi-
ation (RMSD), which is the difference between Expected shortfall and the P/L in the
case of exceptions. RMSD is inspired from Angelidis and Degiannakis (2006), where
they point out that, given an identical number of exceptions, one model underesti-
mates the risks in the case of exception, which is costly as well.

RMSE =



√∑T
i=1 (Expected short f alli −P/Li)2

T
if exception accurs (8)

0 if no exception (9)

with T the total trading days.
The last backtesting VaR, Performance Criterion (VPC), used also in Fuss et al. (2006),
and Bao and Saltoglu (2006), considers “the trade-off between efficient capital allo-
cation and sufficient reserves”. This measure includes the distance between returns
and VaR, correlation between return volatility and VaR, and penalties when there is
exception. VPC is calculated as follow:

VPC = α1
1

n

X∑

x=1

(Real returnx −VaRx)
2+α2

1

n

√√√
K∑

k=1

|VaRk −Real returnk |I (Real returnk < 0)

+α3cor
(
Real return2,V aR

)
+α4|p̂−p| (10)

n is the number of observations; X the number of exceptions; K the numbers of times
when there is no exception and real return is negative. The second term measures
the cost of reserves. It is also undesirable if VaR overestimates market risks. p̂, p are
defined as in the Topiec’s test. α1, α2, α3, α4 are the weight of each component and
sum to unity. They can be adjusted according to the risk managers’ preference. In our
case, we use an equal weight, with αi = 0.25.
In general, a good VaR estimation should explain accurate risk level under both volatile
market conditions and a quiet market without unnecessary reserve costs. In the fol-
lowing section, we will estimate VaR in different scenarios and compare the results
with three backtesting techniques.

4.3 Implication results

Implication results are given in table V and table VI. In the portfolio 1, Jump-VaR has
less exception times than Normal-VaR except for the year 2012/2013, where Jump-VaR
has one more violation. Normal-VaR and Jump-VaR are efficient for the Kupiec’s test;
both results have accepted the hypothesis that the VaR models are accurate. However,
for the first harvest and in the case of exception, Normal-VaR has underestimated
much more risks than Jump-VaR, as the difference between real loss and expected
shortfall is much higher. And concerning the VPC test, the results of both VaRs are
quite close in terms of efficiency.
Without hedging risk, estimation results and backtesting results are quite close in
both VaRs. In the first two harvests, Jump-VaR outperforms Normal-VaR with less vi-
olations and more efficient resource allocation. Jump-VaR will be more desirable for
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cooperatives in the first two harvests. In the 2013/2014 harvest, Jump-VaR overesti-
mates risk, which is costly from the point of view of cooperative managers.
Regarding the portfolio 2, Jump-VaR has lower frequency of violation in all of the three
periods. On average, Jump-VaR is larger than Normal-VaR and frequency of real loss
exceeding expected shortfall is higher in the Normalmodel. Normal-VaR has exceeded
the real P/L in the 2013/2014 harvest 5 times and has passed the theoretical level of
exception. Normal-VaR and Jump-VaR are accepted to be correct according to Kupiec’s
test. Performance of VaR is similar for the first two harvests. In the 2013/2014 har-
vest, Normal-VaR has underestimated risk with expected shortfall lower than real loss
in the case of exceptions. Jump-VaR is also more efficient during this harvest on the
basis of VPC.
In the second portfolio, cooperatives start to hedge risk with an Asian Put. Risk hedg-
ing is not perfect but portfolio return volatility decreases. Normal-VaR and Jump-VaR
work well in the first two harvests; however, in the last year, Normal-VaR underesti-
mates risk.

5. Conclusion

In this paper, a stochastic jump process is used to capture the French wheat spot prices
from 2004 to 2014. The stochastic process incorporates the recent characteristics of
price variation, including mean reversion, jump behaviour and time-varying volatil-
ity. The modelling of jump as an exponential distribution deals with the problem
of less liquidity in physical market and allows to distinguish between positive and
negative jump. The parameters are estimated by a numerical maximization of the
likelihood function of different harvests independently. According to the diagnos-
tic tests, Double-Exponential Jump is efficient to capture the evolution of wheat spot
prices in the application of risk measure for agricultural cooperatives. The difference
is small in the two portfolios. However, it should be noted that there is one occasion
when Normal-VaR has passed the theoretical level of exception. Normal-VaR might
bring about underestimation risk problems in the case of a highly volatile market or
other extrememarket condition. Overall, given the changingmarket environment and
uncertain price distributions, taking into account the other characteristics of prices re-
turns can be complementary for examining the market and risk management of com-
modity companies.
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Figure 1: Daily prices series

The graph gives the daily spot prices (Euro/ton) of French soft wheat and it is also the data that are

used in the paper. The sample period is from 2004 to 2014, 10 harvests in total.

Table I: Descriptive statistics

Descriptive statistic are calculated from log-return series for every harvests. The P-value of

Kolmogorov-Smirnov test is given inside the brackets, the test rejects the null hypothesis at the 5%

significance level.

Log return Mean Std De-
viation

Variance Excess
Kurtosis

Skewness Kolmogorov-
Smirnov test
(P-value)

2004/2005 -0.0011 0.0196 0.0004 9.7423 -0.4120 0.4783 (<0.001)
2005/2006 0.0004 0.0092 8.43E-05 26.6499 3.5099 0.4925 (<0.001)
2006/2007 0.0026 0.0174 0.0003 3.9229 0.9290 0.4813 (<0.001)
2007/2008 0.0004 0.0237 0.0006 0.6912 -0.3691 0.4751 (<0.001)
2008/2009 -0.0022 0.0226 0.0005 10.1772 1.5842 0.4769 (<0.001)
2009/2010 -0.0002 0.0144 0.0002 0.7993 -0.1566 0.4826 (<0.001)
2010/2011 0.0013 0.0249 0.0006 0.7192 -0.0771 0.4735 (<0.001)
2011/2012 0.0009 0.0162 0.0003 0.5689 0.3988 0.4852 (<0.001)
2012/2013 -0.0007 0.0168 0.0003 6.1398 -0.0939 0.4770 (<0.001)
2013/2014 -0.0011 0.0115 0.0001 0.2206 0.0211 0.4878 (<0.001)

8



Table II: Estimated parameters

This table gives all estimated parameters using maximum likelihood function. Standard error given in parentheses is calculated by Hessian matrix. All the
parameters are significant – at least 10% level.

Campagne k µx p η1 η2 λ ω α β -Log Likeli-
hood

2004/2005 Value 0.0218 4.5796 0.4011 28.1493 24.5404 0.0489 8.10E-05 0.2867 0.0059 -452.7
std error (3.66E-03) (1.05E-02) (0.0021) (0.0901) (0.0126) (0.0023) (1.25E-05) (5.13E-03) 2.14E-03

2005/2006 Value 0.1003 4.6478 0.5398 63.8271 87.1363 0.0507 8.49E-06 0.1985 0.5775 -453.95
std error (8.91E-03) 4.24E-03 0.0266 0.9895 1.00 0.0303 1.62E-02 3.38E-02 5.45E-02

2006/2007 Value 0.0403 4.9832 0.5997 28.1841 36.2241 0.0310 2.84E-05 0.1379 0.6682 -607.8
std error (6.15E-03) (3.23E-02) (0.0515) (1.03) (1.03) (1.2E-02) (7.24E-06) (3.03E-02) (0.0463)

2007/2008 Value 0.0239 5.4754 0.451 23.603 21.1662 0.035 0.0002 0.2119 0.3798 -527.1
std error (0.0052) (0.0771) (0.8920) (1.2288) (1.69) (0.0210) (2.53E-05) 0.0564 0.0508

2008/2009 Value 0.0226 4.8342 0.4339 17.9475 23.6587 0.0634 1.04E-04 0.0212 0.6463 -498.2
std error (9.92E-03) (0.0579) (0.0412) (1.09) (1.42) (0.0406) (1.16E-05) (0.0183) (0.0351)

2009/2010 Value 0.0600 4.7706 0.5013 33.3163 30.7647 0.0600 8.79E-05 0.0282 0.4277 -570.05
std error (0.0015) (1.21E-02) (0.3746) (1.0048) (1.01) (2.21E-02) (4.20E-06) (0.0129) (5.88E-02)

2010/2011 Value 0.0606 5.4719 0.6165 26.8196 19.2339 0.0472 3.51E-05 0.2012 0.7367 -514.4
std error (0.0106) (2.09E-02) (0.1105) (0.9451) (1.01) (0.0364) 1.15E-05 (0.0433) (0.0307)

2011/2012 Value 0.0903 5.2874 0.5798 27.9485 30.9311 0.0601 3.19E-06 0.0040 0.9743 -419.7
std error (2.26E-02) (1.29E-02) (0.3540) (4.7725) (0.0331) (0.0573) (7.01E-07) (2.90E-03) (3.08E-03)

2012/2013 Value 0.0200 5.4491 0.400 15.00 14.996 0.0600 1.50E-04 0.1464 0.0415 -492.2
std error (6.66E-03) 4.15E-02 (0.0145) (0.4089) (0.0365) (0.0226) (2.14E-05) (1.78E-02) (1.26E-02)

2013/2014 Value 0.0725 5.2110 0.5872 39.997 29.9998 0.0300 9.47E-05 0.1000 0.1119 -489.4
std error (1.34E-02) (5.28E-02) (0.185) (10.4418) (9.74) (0.0464) (1.17E-05) (8.95E-02) (8.9E-02)
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Table III: Likelihood ratio tests(LR)

Likelihood ratios are calculated for every harvest by comparing with the models
without jump, models without mean reversion and models with constant volatility

Without jump Without mean reversion Constant volatility MC p-value
2004/2005 49.579 9.620 6.896 0.01
2005/2006 59.963 1.907 3.109 0.01
2006/2007 29.470 5.923 5.890 0.01
2007/2008 13.224 4.042 23.254 0.01
2008/2009 39.970 1.227 1.844 0.01
2009/2010 8.486 2.511 32.174 0.01
2010/2011 4.991 8.152 23.492 0.01
2011/2012 2.865 1.033 1.596 0.01
2012/2013 18.571 1.492 2.058 0.01
2013/2014 4.343 3.770 1.148 0.01

Table IV: Portfolio Specification

Setting-up Profit & Loss

Portfolio 1 Long wheat S + Short
Asian call Y

t : (St+10 − St) + (0−Yt+10)
t +1 : (St+11 − St+1)(1− 1/T )− (Yt+11 −Yt+1)

Portfolio 2 Long wheat S + Short
Asian call Y + Long Asian
Put

t : (St+10 − St) + (0−Yt+10)
t +1 : (St+11 − St+1)(1− 1/T )− (Yt+11 −Yt+1)

+(Xt+11 −Xt)

Table V: Number of exceptions

Portfolio 1 Portfolio 2
Number of exceptions Number of exceptions

2011/2012
VaR(Black-Scholes) 3 3

VaR(Jump) 2 1

2012/2013
VaR(Black-Scholes) 3 3

VaR(Jump) 4 2

2013/2014
VaR(Black-Scholes) 4 5

VaR(Jump) 3 4
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Table VI: Backtesting

Kupiec’s test RMSE VPC(VaR perfor-
mance criterion)

Portfolio 1

2011/2012
VaR(Black-Scholes) 20.775 0.541 0.188

VaR(Jump) 24.931 0.020 0.142

2012/2013
VaR(Black-Scholes) 20.772 0.063 0.321

VaR(Jump) .306 0.089 0.332

2013/2014
VaR(Black-Scholes) 17.245 0.414 0.023

VaR(Jump) 20.726 1.783 0.023

Portfolio 2

2011/2012
VaR(Black-Scholes) 24.993 0.123 0.131

VaR(Jump) 30.143 0.153 0.157

2012/2013
VaR(Black-Scholes) 20.772 0.058 0.345

VaR(Jump) 24.929 0.049 0.301

2013/2014
VaR(Black-Scholes) 14.288 0.211 0.025

VaR(Jump) 17.251 0.168 0.010
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