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Abstract
Episodes of collective exuberance that recurrently hit the economy are, in this note, associated with sentiment

propagation in a network of social relations. The pivotal role played by exuberant individuals will give place to a

dynamic setting where limit cycles constitute the most plausible long-term outcome. Endogenous sentiment waves,

with peaks and troughs of exuberance, are in this way identified in the context of a straightforward interaction

scenario.

I gratefully acknowledge the insightful comments of an anonymous reviewer. The usual disclaimer applies.

Citation: Orlando Gomes, (2016) ''Exuberance and social contagion'', Economics Bulletin, Volume 36, Issue 3, pages 1705-1714

Contact: Orlando Gomes - omgomes@iscal.ipl.pt.

Submitted: April 30, 2016.   Published: September 03, 2016.

 

   



 

 

1. Introduction 

 

As thoroughly documented in Akerlof and Shiller (2009) and Shiller 
(2015), exuberance is a pervasive feature of economic activity and of the 
underlying human behavior. Prototypical and popular examples of 
markets where episodes of collective euphoria recurrently emerge include 
stock markets (Phillips et al., 2011, 2015) and real estate (Huang, 2013; 
Kivedal, 2013). In a broader sense, extreme sentiments, which typically 
propagate fast across households and investors, are a source of observed 
aggregate business fluctuations and, therefore, they must be accounted for 
when assembling a comprehensive and rigorous theory of the macro 
economy. 

An influential recent contribution in this direction has been offered by 
Angeletos and La’O (2013), who emphasize the role of changing 
sentiments in shaping business cycles. These authors suggest that 
imperfect communication in a local interaction market environment 
triggers a slow diffusion of information. As a result, sentiment shocks will 
hit the economy at a gradual pace and an inertia effect will preponderate, 
determining the kind of sluggishness that is documented, among others, in 
Sims (1998). 

In the Angeletos-La’O model, sentiments are presented as an exogenous 
force capable of impacting the economy. Although a brief note is included 
suggesting that sentiment changes originate on rumor propagation, in the 
mentioned model this line of reasoning is not explored in detail; as in 
rumor spreading theory (see, e.g., Nekovee et al., 2007 or Zhao et al., 
2012a), the population is separated in three categories (in the case, the 
uninformed, the exuberant and the informed) but no insights on the 
structure of the interaction are given. 

In this note, sentiment contagion across a large population of individuals 
is explicitly modeled. A slight change in the designation of the categories 
of agents is introduced, namely one considers neutrality, exuberance and 
non-exuberance; these are attitudes each individual may have relatively to 
a given sentiment. A homogeneous network of degree 1 is assumed; in this 
network, at each date t, every agent will randomly contact with some 
other agent and, as a result of such contact, the individual attitude 
towards the sentiment might change. 

Besides local direct interaction, sentiment switching is also determined, in 
the framework to propose, by an overall assessment that exuberant 
individuals make about population wide sentiment dynamics. This last 
assumption conducts to an equilibrium result characterized by the 
existence of a limit cycle. The limit cycle outcome suggests the presence of 
endogenous sentiment waves, with high and low exuberance periods 
alternating in time. The regular cycles originating in social contagion may 
constitute an important basis over which business fluctuations can be 
assessed; a similar claim is made by Beaudry et al. (2015), who associate 
observable irregular business cycles to a sequence of stochastic shocks that 
occur over an otherwise deterministic limit cycle foundation. 



 

 

This note is organized as follows. Section 2 establishes a parallelism 
between the spreading of rumors, a widely explored subject in the 
scientific literature, and sentiment contagion. Section 3 characterizes the 
social contagion structure of analysis. In section 4, the main dynamic 
results are derived. Section 5 discusses the existence and stability of the 
limit cycle. Section 6 concludes by discussing how a limit cycle underlying 
the evolution of human sentiments might constitute a powerful piece in an 
integrated view on the generation and persistence of aggregate business 
fluctuations. 

 

 

2. From Rumors to Sentiments 

 

There is a voluminous amount of academic literature dealing with rumor 
propagation, in multiple contexts. Examples of popular applications 
include the dissemination of unconfirmed information in emergency 
scenarios (Huo et al., 2013; Li and Ma, 2015), and the spread of gossip on 
on-line social media (Zhao et al., 2012b; Jin et al., 2013).  

The prototype analytical model underlying most of the studies on the 
topic of rumor propagation corresponds to a simple dynamic system of 
equations originally addressed by Daley and Kendall (1965). This 
framework characterizes a process of social contagion, where the direct 
contact between members of a given population triggers a transition across 
states, specifically from the state of ignorance to the spreader state, and 
from this to the stifler category.  

Because transitions occur through interaction between pairs of agents, the 
rumor typically spreads sluggishly over time, with an initial scenario of 
almost complete ignorance gradually giving place to a setting where 
everyone knows the rumor and where, eventually, everyone will end up by 
losing the initial compulsion to spread it.   

The rumor propagation model might be interpreted as a useful framework 
to address many other social phenomena besides the dissemination of 
rumors in specific environments. In fact, it works as a metaphor for any 
social process of diffusion with origin in the direct contact between 
members of a population. Individuals share ideas, information, knowledge 
and sentiments, and all of these diffusion processes are addressable under 
the social epidemic setup usually applied to approach rumor spreading. 

In the particular case of this paper, the mentioned framework is applied to 
sentiment spreading. Sentiments, as rumors, tend to spread among 
individuals as they contact with one another, as discussed in Zhao et al. 
(2014) and Gomes (2015). Low and high confidence levels or sentiments of 
pessimism and optimism, which are known to have a strong influence on 
the decisions of economic agents, might, then, be interpreted as subject to 
a similar kind of dynamics relatively to the one that underlies rumor 
propagation.  



 

 

The framework proposed in the sections that follow receives direct 
inspiration from the rumor propagation setup, in the sense that it 
separates the population in three categories of agents, allowing agents to 
change category as they interact with one another in a degree 1 
homogeneous network. Furthermore, probabilities of transition and the 
type of relations that trigger transitions are similar to those found in the 
prototype ignorant-spreader-stifler model.  

However, despite the similarities, the adaptation of the analytical setting 
requires a few adjustments, which will become evident in the following 
section: first, the categories of agents receive new denominations - the 
neutral, the exuberant and the non-exuberant; second, while rumors have 
an irreversible nature (someone who knows the rumor will not recede to a 
state of ignorance), sentiments eventually retreat to the initial state; 
third, agents with a strong sentiment (the exuberant) will have a more 
active role in the propagation process than the agents in the other 
assumed categories (instead of a constant transition probability governing 
the decision of exuberant individuals to abandon this category, a 
probability contingent on the aggregate sentiment dynamics is taken). 

The selected sentiment categories are supposed to conform with the 
evidence underlying the arguments in the first paragraph of the 
introduction. In most markets (financial and housing markets are good 
examples), periods of collective euphoria or apparent irrational exuberance 
are observed. Exuberance tends to set in at a relatively fast pace, as the 
reduced number of initial exuberant begins contaminating the agents who 
were unaware of any reason to change their based-on-fundamentals view of 
the market (to whom we call the ‘neutral’).  
Exuberance will eventually fade out, as individuals continue to establish 
contact and realize that the factors underlying the generated sentiment 
bubble will not persist forever. Agents will then start a process of 
returning to neutrality, which contains two phases: first, they lose their 
exuberance (in the sense they do not force their point of view on others) 
but continue to behave in a way that feeds the bubble; as they contact 
with individuals that have returned to the neutrality state, the non-
exuberant will also go back to such state. Meanwhile, another bubble may 
eventually emerge, turning this into a perpetual process that maintains 
markets in an out-of equilibrium position. 

 

 

3. The Social Interaction Framework 

 

Let ݕ ,�ݔ� and ݖ� represent, respectively, the densities of neutral, exuberant 
and non-exuberant agents in a social network. At each date t, social 
interaction might move agents from one sentiment category to another 
according to a set of rules adapted from rumor propagation theory, 



 

 

1) When a neutral individual meets an exuberant, the first will shift to the 
exuberance state with probability ߣ ∈ (0,1]; 

2) When an exuberant meets another exuberant or a non-exuberant, the 
first turns into a non-exuberant with probability � ∈ (0,1]; 

3) When a non-exuberant meets an agent in the neutrality state, the non-
exuberant becomes neutral with probability � ∈ (0,1]. 

Exuberant individuals are assumed more attentive than the other agents; 
besides deliberating based on local contact, they will also make an 
assessment of the overall sentiment dynamics and decide not to change 
category when the number of agents sharing the sentiment is increasing 

relatively fast. Therefore, parameter  in the above transition rules is 

replaced by function �� =
� 
2
 1 − tanh ߢ(Δݕ� + Δݖ�)  , ߢ > 0, � ∈ (0,1]. Observe 

that if Δݕ� + Δݖ�−  then ���  and if Δݕ� + Δݖ� +  then  ��0; when 

, �� = �  for any Δݕ� + Δݖ� < 0 and �� = 0 for any Δݕ� + Δݖ� > 0.  

Under the proposed transition rules and applying the law of mass action, 
sentiment dynamics are translated in a 2-dimensional system of difference 
equations, 

  Δݕ� = �ݕ�ݔߣ − �ݕ)�ݕ�� + (�ݖ

Δݖ� = �ݕ �ݕ�� + − �ݖ ݔ�ݖ�   (1) 

with ݔ� = 1 − �ݕ −  .�ݖ
 

 

4. Local Dynamics 

 

Let ܧ = ,∗ݕ   �ݕΔ : ∗ݖ = 0,Δݖ� = 0  be the set of equilibrium points of system 
(1). 

 

Proposition 1. Equilibrium set E contains three points: the corner 
solutions ݁1,  ݕ∗, = ∗ݖ (0,0), and ݁2,  ݕ∗, = ∗ݖ (0,1), and the non-trivial 

equilibrium ݁3,  ݕ∗, = ∗ݖ (�+ߣ)  �+ߣ2 �ߣ2 
,

(�+ߣ)  �+ߣ2 2ߣ2
 . 

 

Proof: Noticing that tanh(0)=0, in the long-term equilibrium �∗ =
� 
2
. 

Applying, then, the equilibrium condition to system (1), one gets 

∗ݕ∗ݔߣ  =
� 
2

. ∗ݕ)∗ݕ +  �(∗ݖ
2

. ∗ݕ ∗ݕ + = ∗ݖ ݔ∗ݖ∗    

The above system, solved with respect to the equilibrium values, has three 
solutions, namely those in the proposition  



 

 

 

To address the local stability of each of the equilibria, one computes the 
Jacobian matrix associated to system (1), 

 

� =     
 1 + 1 ߣ − ∗ݕ2 − − ∗ݖ � 

2
∗ݕ2  + − ∗ݖ ∗ݕ��� ∗ݕ)∗ݕ +  �(∗ݖ

2
∗ݕ2  + + ∗ݖ

∗ݕ��� ∗ݕ ∗ݕ + + ∗ݖ ∗ݖ�   
 − ߣ  +

� 
2
∗ݕ  − ∗ݖ��� ∗ݕ)∗ݕ + (∗ݖ

1 +
� 
2
∗ݕ +

∗ݖ��� ∗ݕ)∗ݕ + (∗ݖ − � 1 − ∗ݕ −  ,  ∗ݖ2
(2) 

with ���ݕ∗ = − � 
2

1 ߣ  − − ∗ݕ2 ߣ) − ∗ݖ��� ߢ  ∗ݖ(� =
� 
2

 � 1 − + ∗ݖ2 ߣ) −  ߢ ∗ݕ(�
 

Proposition 2. Corner solutions ݁1 and ݁2 are not locally stable, ∀ߣ, � , � ∈
(0,1]. The interior equilibrium, ݁3, is locally stable under condition ߢ <

ߣ−1
ߣ �+ߣ2  �2  2

. 

 

Proof: For ݁1, � =  1 + ߣ 0

0 1 − � , and for ݁2, � =  1 − � 
2

0� 
2

+ � 1 + � . In both cases, 

two non-negative real eigenvalues exist, one located inside and the other 
outside the unit circle.  

For ݁3, the Jacobian matrix is � =  1 + �ߣ − ߙ −�� − ߙߙ + ߚ)ߣ − �) 1 − ߚ � − � +  , ߙ
with ߙ ≡ ߚ ,�+ߣ�ߣ ≡ � 

� , �+ߣ2 ≡ (�+ߣ)3  �+ߣ2 �2 �2ߣ2
  .ߢ

Let �� �  and ݁ܦ� �  represent, respectively, the trace and the determinant 
of matrix J. The conditions for stability are 1 + �� � + < � �݁ܦ 0, 
1 − �� � + < � �݁ܦ 0, 1 − < � �݁ܦ 0. The first two conditions are satisfied, 
regardless of parameter values. The third condition requires �ߚ ߣ < + ߚߙ) � + �). Solving the inequality with respect to ߢ, the inequation in 
the proposition is derived  

 

The two exuberance-free steady-states are saddle-path equilibria; they will 
never be feasible long-term solutions unless 0ݕ = 0. Thus, if one assumes 



 

 

that at least one individual, no matter the dimension of the population, is 
exuberant, one can concentrate the analysis on ݁3. The interior equilibrium 
is locally stable for a relatively low value of parameter ߢ; as progressively 
larger values of ߢ are assumed, stability will be eventually lost as the 
system undergoes a Neimark-Sacker bifurcation.  

Fig. 1 displays, for ݁3, the admissible region of local dynamics in the trace-
determinant space. Given the imposed constraints on the values of 
parameters, the dynamics are circumscribed to a region that is delimited 
by inequalities �� � − 1 < > � �݁ܦ ��(�) and �� � > 1. The diagram makes 
it evident that the only possible bifurcation to occur in this case is a 
Neimark-Sacker bifurcation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Trace-Determinant diagram. 

 

 

5. The Limit Cycle 

 

Numerical inspection of the dynamic behavior of ݕ� and ݖ� indicates that 
the Neimark-Sacker bifurcation gives place to a limit cycle for every value 
of  larger than the respective bifurcation value.  

To formally address the existence of a limit cycle, consider the following 
constraint over parameter values: ߣ = � = � = 1. Under this constraint, the 
bifurcation occurs at  = 0, and therefore ݁3 is unstable ∀ߢ ∈ ℝ+. Fig. 2 
represents an attractor for the relation between the two endogenous 
density variables, for  = 2.5; the attractor takes the form of a closed 
invariant curve.  

Det(J)=Tr(J)-1 

Tr(J)=1 Tr(J) 

Det(J) 

Det(J)=1 

Det(J)=Tr(J) 



 

 

 

 

Fig.2 – Long-term attractor. 

 

Both the graphical analysis and intuition suggest that the Neimark-Sacker 
bifurcation is supercritical. This signifies that independently of the initial 
state, and as long as this state does not coincide with any of the three 
unstable equilibrium points of the system, all orbits originating outside or 
inside the attractor will converge to it. The intuition is straightforward: if 
admissible values of both endogenous variables are confined to the interval 
[0,1] and the three equilibrium points are unstable, trajectories will not 
converge to any of them and, presumably, they follow the path towards 
the closed invariant curve. This is confirmed by the graphic: if the 
bifurcation were subcritical, the trajectories of the variables would be 
repelled from it and, in fact, the limit cycle would not be observable. 

A proof of the existence of a limit cycle and of a supercritical bifurcation 
follows. 

 

Proposition 3. Let ߣ = � = � = 1. The dynamics of system (1) is 
characterized by the formation of a limit cycle. This limit cycle is locally 
attractive, i.e., the Neimark-Sacker bifurcation that generates it is 
supercritical. 

 

Proof: Marsden and McCracken (1976), enumerate the conditions for the 
existence of a closed invariant curve in a 2-dimensional difference 
equations system, 

1) Non-hyperbolicity condition:  0 ߣ  = 1; 

2) Non-strong-resonance condition: 1ߣ
� 0 ≠ 1 for k=1,2,3,4; 



 

 

3) Transversality condition:  ݀ ߢ݀  ߢ ߣ 0=ߢ 
= ݀ ≠ 0; 

4) Genericity condition:  � = −�݁   1 − 2  0 2ߣ   0 1ߣ2

1 − − 11ܿ20ܿ 0 1ߣ 1

2
 ܿ11 2 −  ܿ02 2 + ≠ 21ܿ 0 2ߣ ݁� 0, 

with  ܿ20 =
1

8
ݕݕ݂   − ݖݖ݂ + ݖݕ2݃  + ݕݕ݃ � − ݖݖ݃ − 2 ݖݕ݂    ܿ11 =

1

4
ݕݕ݂   + ݖݖ݂  + ݕݕ݃ � + ݖݖ݃    ܿ02 =

1

8
ݕݕ݂   − ݖݖ݂ − ݖݕ2݃  + ݕݕ݃ � − ݖݖ݃ + 2 ݖݕ݂    ܿ21 =

1

16
ݕݕݕ݂   + ݖݖݕ݂ + ݖݕݕ݃ + ݖݖݖ݃  + ݕݕݕ݃ � + ݖݖݕ݃ − ݖݕݕ݂ − ݖݖݖ݂    

If conditions 1 to 4 are satisfied, an invariant closed curve is formed at the 
bifurcation point. Furthermore, this curve is attracting (supercritical 
bifurcation) if ݀ > 0 and � < 0. 

In the above expressions, 0 1ߣ ,  are the eigenvalues of the Jacobian  0 2ߣ 
matrix at bifurcation point ߢ = 0; in the current case they correspond to 0 1ߣ , = 0 2ߣ

5

6
± �  11

6
 . The term  0 ߣ   is the modulus of the pair of complex 

conjugate eigenvalues at ߢ = 0. Functions ݂ and ݃ denote the r.h.s. of each 
of the two equations in system (1); the c terms involve partial derivatives 
of these functions evaluated at the bifurcation point.  

The observance of the first two conditions is self-evident. Regarding the 
other two, computation indicates that ݀ =

1

27
 � = − 11

72
 11 − 173

192
 

Because ݀ > 0 ⋀� < 0, one confirms the formation of closed invariant curves 
of an attracting nature  

 

 

6. Conclusion 

 

Sentiment shocks, understood as a source and a driver of business 
fluctuations, are gradually occupying their rightful place in mainstream 
macroeconomic theory. In order to strengthen the explanatory and 
predictive power of the theory, it is vital to identify and characterize the 
forces that generate and feed the episodes of collective euphoria. This note 
offers a tentative explanation on the causes of the intermittent resurgence 



 

 

of phases of strong exuberance. The explanation is based on social 
interaction and contagion, with the particularly attentive posture of 
exuberant individuals inducing the formation of limit cycles that support 
the persistence of sentiment waves that, in turn, will be reverberated into 
the economy. 

The proposed interaction model should be interpreted as a baseline 
structure over which one can assess aggregate business decisions and 
market transactions. Evidently, business cycles are fed by technology 
shocks, policy actions, preference changes, stickiness on the adjustment of 
prices and wages, and many other factors recurrently identified in the 
literature. However, beyond all these features of the economy, there is an 
underlying natural tendency for businesses to reveal more vitality in some 
periods and less vitality on others, as a result of people’s confidence or 
sentiments. As Keynes brilliantly put it, in his General Theory, people are 
commanded by their animal spirits and, therefore, psycho-sociological 
factors should not be disregarded when evaluating (macro)economic 
outcomes. 

A possible avenue for future research that the offered analysis suggests 
consists in inquiring in what extent is it possible to separate purely 
economic driven fluctuations from those dictated by the dynamics of 
interaction and sentiment switching. It can be a meaningful empirical 
exercise to identify how countries with similar infrastructural conditions 
diverge in terms of the duration and intensity of their periods of recession 
and expansion possibly as a result of how societies are more or less prone 
to different kinds of social interaction.  

Bringing social interaction considerations to the realm of stabilization 
policy might assist public authorities in understanding that the same 
policy recipes are not always adequate to confront the same economic 
issues, when these issues unfold in distinct social scenarios. How 
individuals interact and how exuberance emerges and vanishes are factors 
that matter to economic policy and that compromise the application of 
universal policy rules to different social and cultural environments in 
space and time. 

 

 

References 

 

Akerlof, G.A. and R.J. Shiller (2009) Animal Spirits: How Human 
Psychology Drives the Economy, and Why It Matters for Global 
Capitalism, Princeton, NJ: Princeton University Press. 

Angeletos, G.M. and J. La'O (2013) “Sentiments” Econometrica 81, 739-
779. 

Beaudry, P.; D. Galizia and F. Portier (2015) “Reviving the Limit cycle 
View of Macroeconomic Fluctuations” NBER working papers 21241. 



 

 

Daley, D.J. and D.G. Kendall (1965) “Stochastic Rumours” Journal of the 
Institute of Mathematics and Its Applications 1, 42-55.  

Gomes, O. (2015) “A Model of Animal Spirits via Sentiment Spreading” 
Nonlinear Dynamics, Psychology and Life Sciences 19, 313-343. 

Huang, M.C. (2013) “The Role of People’s Expectation in the Recent US 
Housing Boom and Bust” Journal of Real Estate Finance and 
Economics 46, 452-479.  

Huo, L.; T. Lin; and P. Huang (2013) “Dynamical Behavior of a Rumor 
Transmission Model with Psychological Effect in Emergency 
Event” Abstract and Applied Analysis, vol. 2013, article ID 282394, 9 
pages.  

Jin, F.; E. Dougherty; P. Saraf; Y. Cao; and N. Ramakkrishnan (2013) 
“Epidemiological Modeling of News and Rumors on Twitter” 
Proceedings of the 7th Workshop on Social Network Mining and 
Analysis, article 8. 

Kivedal, B.K. (2013) “Testing for Rational Bubbles in the US Housing 
Market” Journal of Macroeconomics 38, 369-381. 

Li, C. and Z. Ma (2015) “Dynamics Analysis of a Delayed Rumor 
Propagation Model in an Emergency-Affected Environment” Discrete 
Dynamics in Nature and Society, vol. 2015, article ID 269561, 13 
pages. 

Marsden, J.E. and M. McCracken (1976) The Hopf Bifurcation and Its 
Applications. New York: Springer-Verlag.  

Nekovee, M.; Y. Moreno; G. Bianconi and M. Marsili (2007) “Theory of 
Rumor Spreading in Complex Social Networks.” Physica A 374, 457-
470. 

Phillips, P.C.B.; S. Shi and J. Yu (2015) “Testing for Multiple Bubbles: 
Historical Episodes of Exuberance and Collapse in the S&P 500.” 
International Economic Review, 56, 1043-1078. 

Phillips, P.C.B.; Y. Wu and J. Yu (2011) “Explosive Behavior in the 
1990s NASDAQ: When Did Exuberance Escalate Asset Values?” 
International Economic Review 52, 201-226. 

Shiller, R.J. (2015) Irrational Exuberance, 3th edition, Princeton, NJ: 
Princeton University Press.  

Sims, C.A. (1998) “Stickiness” Carnegie-Rochester Conference Series on 
Public Policy 49, 317-356. 

Zhao, L.; H. Cui; X. Qiu; X. Wang; and J. Wang (2012a) “SIR Rumor 
Spreading Model in the New Media Age” Physica A 392, 995-1003.  

Zhao, L.J.; J.J. Wang, Y.C. Chen; Q. Wang; J.J. Cheng and H.X. Cui 
(2012b) “SIHR Rumor Spreading Model in Social Networks” Physica 
A 391, 2444-2453. 

Zhao, L.; J. Wang, R. Huang; H. Cui; X. Qiu; and X. Wang (2014) 
“Sentiment Contagion in Complex Networks” Physica A 394, 17-23. 


