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1. Introduction 

 In this paper, our main concern is to revisit and derive the asymptotic properties of 

Pesaran’s cross sectional dependence (CD, herafter); a test which is mainly used in applied 

econometric works (e.g., see Baltagi, 2013; De Hoyos, and Sarafidis 2006; Pesaran, 2002; 

2004 and 2006; and Pesaran, Schuermann, and Weiner, 2004; to mention few). 

 We begin by reviewing the CD test obtained by Pesaran (2002; 2004 and 2006). Some 

of the results will not be exact but they will be ‘good enough’. We then will present 

techniques for obtaining ‘good enough’ results, i.e., asymptotic analysis. In general ‘good 

enough’ results are sufficient (e.g., see White, 1999). The proofs provided are original and 

easier compared to those of Pesaran (2002; 2004 and 2006).  

  The remainder of the paper is organized as follows: Section 2 reviews the Pesaran’s 

CD test. Asymptotic properties of CD test are derived in Section 3. Section 4 concludes the 

paper. 

2. Pesaran’s Test of Cross Sectional Dependence 

Consider the standard panel-data model 

it i i it ity X u        1, , ; 1, ,i N t T       (1) 

where 
itX  is a 1k   vector of regressors, 

i  are defined on a compact set and are allowed to 

vary across i , and 
i  are time-invariant individual nuisance parameters. Under the null 

hypothesis, 
itu  is assumed to be independent and identically distributed (IID) over periods 

and across cross-sectional units. Under the alternative, 
itu  may be correlated but the 

assumption of no serial correlation remains. The hypothesis of interest is, 

  0 :H  corr , 0
ij ji it jt

u u     for i j    (2) 

 vs. 
1 : 0

ij ji
H    for some i j . 

In the context of seemingly unrelated regression estimation, Breusch and Pagan (1980) 

proposed an LM statistic, which is valid for fixed N  as T   and is given by, 
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and it
e  is the Ordinary Least Squares (OLS) estimate of 

itu  defined by 

  ˆˆ
it it i i it

e y X     ,      (4) 

with ˆ
i and î  being the estimates of 

i and 
i  computed using the OLS regression of 

ity  on 

an intercept and 
itX  for each i , separately. LM

CD  is asymptotically distributed as 2  with 

 1 / 2N N   degrees of freedom under the null hypothesis. However, this test is likely to 

exhibit substantial size distortions when N  is large and T  is finite. A situation that is 

commonly met in empirical applications, mainly because the LM
CD  statistic is not correctly 

centered for finite T  and the bias is likely to get worse with N  large. 

 Pesaran (2004) has proposed the following alternative,  
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    

      (5) 

and showed that under the null hypothesis of no cross-sectional dependence  0,1CD N  

for T  sufficiently large, as N  ; where here ‘ ’ denotes ‘converge to’. Unlike the 

LM
CD  statistic, the CD statistic has mean at exactly zero for fixed values of T  and N , under 

a wide range of panel-data models, including homogeneous/heterogeneous dynamic models 

and nonstationary models. Our interest here lies in the asymptotic properties of the above test.  

3. Asymptotic Properties 

 Asymptotic properties of CD test can be derived under the following assumptions: 

Assumption 1 



 

 

For each i , the disturbances, 
itu  are serially independent with zero mean and the 

variance 2

i , such that 0 i   .  

Assumption 2  

Under the null hypothesis defined by, 

0 : it i itH u   , with  ~ IID 0,1it  i  and t ,  

The disturbances, 
it , are symmetrically distributed around zero. 

Assumption 3  

The regressors,
itX , are strictly exogenous such that, 

  0it iu X   , i  and t , 

where  1 2, , ,i i i iTX x x x   and 
i iX X  is a positive definite matrix. 

Assumption 4 

1T k   and the OLS residuals,
ite , defined by (4), are not all zero. 

Theorem 1 

 Under Assumptions 1-4, 

    ˆ 0
ij

   and   0CD   

Proof of Theorem 1: Straightforward. See Pesaran (2004) 

Next, we then have the following asymptotic results: 

Proposition 1: Consistency 

   ˆlim ij ijp    

Proof of Proposition 1: 
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it
e  is the OLS residuals from the individual-specific regressions, defined by (4) and

 1 2, , ,i i i iTe e e e  . 

Also, 
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where 
i i i ie M  ; 1( )

i T i i i
M I X X X X

   T i
I A   and  1 2, , ,i i i iT     .  

Expanding terms, 
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Then, 
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And 
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           (11)
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where, 
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, we then have, 
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with  1 2, , ,i i i iTu u u u  ;
i j i i j j
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Finally, ˆlim
ij ij

p   ■ 

Proposition 2: Asymptotic Normality 

Under Assumptions 1 - 4 
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Proof of Proposition 2: 



 

 

 The proof here follows results in Cameron and Trivedi (2005) and White (1999).  

Step 1: 

First note that under Assumptions 1-4, ˆ
ij  and ˆ

is  are cross sectionally independent 

for i j s  . In particular, 
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And    2ˆvar 1ij ij    . Therefore, based on the standard Central Limit Theorem (CLT), 
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Hence for a fixed 1T k   and as N   we have, 
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N
z  is asymptotically normally distributed. 

When T  , to see the asymptotic distribution we note that 
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Using (12), (13), (14), (15) and (16), we have  
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Under 0H , 
it  and 

jt are independently distributed and serially uncorrelated with mean zero 

and a unit variance. Therefore, for each i j , as T   
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Hence, ˆ
ij

 is asymptotically normally distributed as T  .■ 

Proposition 3: Asymptotic Efficiency 
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Proof of Proposition 3: 

 The proof here is based on results in Greene (2012) and White (1999). 
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 In both cases (as N  and as T  ), N
z  and ˆ

ij

T

T
  have the smallest asymptotic 

variance.■ 

CD being consistent, asymptotic normally distributed with smallest asymptotic 

variance is called asymptotically efficient. 

Proposition 4: Invariance 

If ˆ
ij  is a consistent estimator of 

ij  and if h is a one-to-one function, then  ˆ
ijh   is a 

consistent estimator of  ijh  . 

Proof of Proposition 4: 

The invariance principle is thoroughly investigated in White (1999).  

If h is one-to-one function, then 
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ij  being a consistent estimator of 

ij ,    ˆ
ij ijh h  . 

  As an illustration, 

 
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i j i

T
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N N




  

  
     

  is also a consistent estimator of 
 

1

1 1

2

1

N N

ij

i j i

T
h

N N




  

  
     

 . An 

interesting example is that  ˆln
ij

  is a consistent estimator of  ln
ij

 ■ 

4. Final Remarks 

 There are various available tests for cross-sectional dependency analysis in panel data. 

The Pesaran’s CD test has good asymptotic properties and should be recommended in 

empirical analysis. 
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