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Abstract

This paper offers an alternative proof for the main result in Nash(1950). The proof we use intends, in a short way, to
give some insight on how the Nash's axioms bridge to his bargaining solution. In particular, to how they shape the
function representing the bargaining choice.
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Over six decades have passed since Nash’s (1950) seminal article has been published. Its
influence cannot be minimized; it is cited by hundreds of papers and there are numerous
important departures and generalizations of the same (see Thomson (2009)). The purpose
of this paper is to present an alternative and constructive proof that the Nash axioms char-
acterize the Nash bargaining solution. The proof of this result normally starts by assuming
the solution and then confirming it until it coincides with the choice in all sets. This follows
Nash (1950)’s presentation, although it is unclear as to how the solution came about. We
will arrive at the result without guesses, constructively bringing the initial axioms and the
final solution together.

We start by establishing, using the Pareto optimal (PO) and Symmetry (Sym) axioms,
the choice on a particular symmetric set whose Pareto-optimal frontier is given by a line.
The Affine Transformation (AT) axiom is then used to find the choice on any set with a
linear Pareto-optimal frontier, with the obvious conclusion that for a bargaining choice to
be well defined in the collection of budget sets, ITA is not needed. To further extend the
solution to all convex sets, AT and ITA are used. It will be shown why the bargaining
solution relates with the function f(x,z3) = x129, and, in particular, how the AT and ITA
axioms work together to generalize the result from the collection of budget sets to the whole
class of convex sets.

As most definitions and axioms we use are widely employed, no intuition is provided. A
vector in ]R2+ will be denoted by a bold letter, usually @, and its coordinates by = (x,y) or
x = (z1,22). The collection ST is the set of the compact and convex subsets S C R? with
S152% > 0, where S! is the ideal value for the first player, S = max {z : 3y € R, (z,y) € S}
and S? is the ideal value for player 2. A set is symmetric if (z,y) € S implies that (y,x) € S.
A set is comprehensive if @ € S implies that y € S for any 0 < y < . The comprehensive
convex hull of S, ch(S), is the smallest comprehensive and convex set that contains S. For
a comprehensive set S € ST, the function yg : [0, 5] — [0, 5?] defines the maximum value
of y when the first coordinate is z; that is, (z,y) € S if and only if 0 < y < yg(x). An
affine transformation of a vector = (z,y) by a = (a1, as) is a = (12, asy). An affine
transformation of a set S by a is aS = {aa: rx e S}.

Throughout this paper, we work, without loss of generality, with normalized bargaining
where the threat point is (0,0). In this case, the bargaining problem is defined for S € S*,
where S is interpreted as the set of available utilities for the players. The Nash bargaining
solution is a function ¢ : ST — R% such that each bargaining problem S picks a point ¢(S) €
S, respecting the following axioms: Pareto Optimality (PO), for S € S*, 3z € S\ ¢(9) :
x > ¢(S); Independence of Irrelevant Alternatives (ITA), if for S’,S € ST with S C S and
c(S) € ', then ¢(S") = ¢(S); Symmetry (Sym), for symmetric S € ST, ¢(S); = ¢(5)q; Affine
Transformation (AT), for S € St and a € R%, the bargaining choice verifies ¢(aS) = ac(S).

The next lemma can be interpreted as a coherence requirement imposed by IIA.

Lemma 1. S,5 € ST, ¢(S) # ¢(5'), and ¢(S) € §'; then, c(S") ¢ S.

Proof. By definition, ¢(S) € S, and by hypothesis, ¢(S) € S’; then, ¢(S) € SN S C S, and
by ITA, ¢(SNS") = ¢(S). Assume, by absurd, that ¢(S’) € S, so that ¢(S") € SN S C 5%
then, using the [IA axiom again, ¢(S N S’) = ¢(5'), but given that ¢(S) # ¢(S5’), this is a
contradiction. O



Theorem 1. The choice ¢ is such that ¢(S) = arg, g maxz1xs for every S € S*.

For the proof of this theorem, we start by establishing the choice on a set whose Pareto-
optimal frontier is given by a line. The AT axiom is then used to find the choice on any set
with a linear Pareto-optimal frontier. To extend the solution to all convex sets, AT and ITA
are used. To get this extension, we start with any z € S and carefully pick some points xy
for k € N, with which we define a piecewise linear and conver function y,(-). We conclude
that if any point (x,y,(x)) € S, then z is not the bargaining choice at S. We then stretch
function y, to its limit, finding a new function y(-), and conclude that if any point above the
curve (x,y(z)) is in S, then z is not the choice ¢(S). Using this result, we can easily deduce
that the choice is ¢(S) = arg,c g max 1 zs.

Proof. Throughout this proof, we assume that any set S is such that S = ch(S). We can
assume it without loss of generality because any point in ch(S) \ S is Pareto dominated in
S; hence, IIA and PO imply that ¢(S) = ¢(ch(S)).

The set L € ST with frontier y,, defined by the line that passes through (2,0) and (0, 2), is
symmetric; therefore, by PO and Sym, ¢(L) = (1,1). For any given vector z = (21, 22) € R3,
line Ly = zL has ¢(Ly) = zc(L) = z and passes through (221,0) and (0,2z25). Thus, yz, is
described! by yi,(z) = 220 — (22/z1)x for x € [0,221]. When a = (o, a3) € R?, we use

notation o = (a¥, a%). The proof is divided into seven claims.

Claim 1. For any given z = xo = c(Ly) and o = (772«7__1)7 with 1/2 < v < 1, sets

L, = o*Ly are such that c(Ly) = &) € L1 for any k € N.

To prove that ¢(Ly) = @ € Ljy1, we need the expression for the Pareto-optimal frontier
of Lyy1. We know that aft1(221,0) = (2¢9%%121,0) and a*™(0,22) = (0,2(277—_1)“122) are
in Ly 1; hence,

ry k+1 1 k+1 29
Yy, (@) = <27 — 1) 229 — (27 — 1) o for z € [0, 229" ].

kz = (xkuyk) -, and thUS, T = fykzl and Yp = (2711)kz2'
1

Then, yLk+1 (7k21> = <27ﬂf_1)k22(22’yﬂy_1 - 27_1) = Yk- Accordingly, yLk+1 (xk> = Yk and S
Lyyq.

Claim 2. z, € ch{zo,xx}, for 1 <p <k, and p,k € N.

By definition, &y = ¢(Ly) =

To prove this claim, we start by defining the piecewise linear curve y,(z) that passes
through all the points «, for p € N and show that this curve is continuous and convex.

! Any line that passes through (a,0) and (0,b) has expression y(z) = b — (b/a)z.
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For 1/2 <y < 1land 0 < x < z, if we join the line segments between z,_; = o* 'z and
xy, = a’z in one curve, for all k > 1, we get curve y,(z) = yr, (x) for v¥2z; <z < 4F 712y

that is,

Yy (z) = (277_ 1>k2z2 - (271_ 1>kz—jx for v¥2; <o <!z and k € N. (1)

y, is continuous: at the interior of each subdomain v*2; <z < +*71z;, y, is a line; at the
endpoints, as yr, (¥x—1) = Yk—1 = Yr,_, (Tx—1), the function too is continuous. y,(x) is convex
because its left derivative is non-decreasing (Roberts and Varberg (1973), theorem A, page
10). For z < 2/, if k and K are integers such that 7%z, <z < 471z and ¥ 2z, < 2/ < y¥ "1z,
then v%z, < 4%z and k > K/, as 1/2 < v < 1. The left derivative of y, at x is equal to

k »
— (2+> 2 and thus smaller than, the left derivative at 2/, — (%) 2 hecause —— > 1,
v—1 21 2v—1 21 2v—1

for 1/2 < v < 1. The left derivative is non-decreasing and y, () is convex.

To show that x, = (z,,y,) € ch{zo,zr} for 1 < p < k and 1/2 < v < 1, note that
Ty = Yz < APz = z, < 7. Then, z, = Bzo + (1 — B)ay, for some § € (0,1). By
convexity of y,. y, = y,(2,) < By,(z0) + (1 — By, () = Byo + (1 — Byr = y,,. Thus,
xp, = (7p,Yp) € ch{To, @} because (7,,y,) = Bxo + (1 — B)xk € ch{To, xx} and y, < y,.
Claim 3. x¢ # c(ch{a:o,a:k}) for k> 1.

If £y = c(ch{wg,wk}), then c(ch{wo,wk}) € Ly by Claim 1. &1 = ¢(L4), and by the
previous claim, ®, € ch{xg, xy}; therefore, ¢(L1) € ch{xg,xr}. Given that g # x1, we
arrive at a contradiction using Lemma 1.

Claim 4. For z < z, y(z) = limyp y,(2) = 2122/ 2.

Define k(v) as an integer such that v¥z <z < 4*™=1z. As v < 1, Iny < 0. Then,
by taking logarithms and manipulating the inequalities, we obtain

In(z/z)/Iny < k(y) <In(z/z)/Invy+ 1. (2)
Knowing that, for 0 < v < 1/2, v/(2y — 1) > 1, we have

(v/(27 = )" < (/27 = 1) < (/g )" ()



Taking logarithms and applying L’Hopital’s rule, we get the following for the left inequal-
ity of (3):

L —1/@2y—1)2 I (y/(2y - 1))
/)iy L7 )t 0L

. k()
< limln (v/(2y — 1)),
< limln (7/(2y — 1)

Doing the same for the right inequality of (3), we conclude that lim. (v/(2y — 1))k(7) =
z1/z. Applying the same type of calculations, we get that lim+ (1/(2y — 1))k(7) = (z1/2)2.
Substituting these two results into (1), we get that y(x) = lim4 y,(2) = 2122/ for 0 < z <
21

Claim 5. For any set S € ST with z € S, if there is an © = (x1,22) € S such that
0 <z < 2z and xyx9 > 2129, then ¢(S) # z.

If 2129 > 2129, then, by Claim 4, x5 > y(x1). Thus, as (x1,22) € S, 0 < 21 < 2, and
y(z1) < x9, (z1,y(z1)) € int(S). By definition, k(v) is such that v*z; < 2z < #0712,
Then, it is easy to conclude that lim,_,; zlfyk(” = lim,; fykm_lzl = x1. In the previous
claim, we proved that

lim 2o (v/(2y — 1))“7) = z129/x1 = y(271).
y—1

Hence, @y = (7"3(”21, (v/(2v - 1))“7)22) = oz converges to (z1,y(z1)) as v con-

verges to 1. Then, for 7 close to 1, Txy) = o’z ¢ int(S). By Claim 3, we know that
z = xg # c(ch{xo, Ti(y) }), and given that xg, Tk(y) € S, we have ch{xo, Tr(y)} € 5. Then,
by IIA, z # ¢(95).

Claim 6. If there is an € S such that x1 > z1 and x1x5 > 2129, then ¢(S) # z.

We can apply the same reasoning for v > 1 and x > z; that we did for 1/2 < v < 1
and = < z;. Defining the piecewise linear function y,(z) for + > 2; and v > 1 that passes
through ofz for all k € N, we get

k 1 k
Yy (z) = <27 — 1) 229 — (27 — 1) j—jx for Y"1z <2 < ¥z and k € N. (4)

As before, as y,(x) is continuous and convex, the conclusion of Claim 3 too holds.
Through a similar calculation to that used in Claim 4, it can be derived that y(z) =
lim,}; y,(x) = z122/x. Then, proceeding as in Claim 5, we prove this claim’s result.

Claim 7. For any S € ST, ¢(S) = arg, g max xzs.

For any z € S, if there is an @ € S such that x1x9 > 2129, then by claims 5 and 6,
z # ¢(S). Thus, if it exists, ¢(S) must be such that ¢(S5)1¢(S)y > 2129 for all z € S.
Which, given the convexity of S € ST, is unique. Thus, the only possible solution is ¢(S) =
arg,cgmax r;xe. It is easy to verify that arg, g maxx 2, satisfies all Nash’s axioms, hence
c(S) = arg, g max ;s it is in fact the solution. O
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