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Abstract
Dynamic asset pricing models built within the classic CARA-Normal framework usually assume myopic traders with
one-period investment horizons or infinitely lived investors for tractability. I relax this myopic assumption and show
the values of more finite trading opportunities are state-contingent and arise naturally as non-central $chî 2$-
distributed. The moment generating function of the non-central $chî 2$ distribution thus can be utilized to derive the
traders' first order conditions and preserve closed-form solutions. The model with non-myopic traders has a modified
two-period overlapping generations(OLG) interpretation in which each young generation can have multiple investment
opportunities.
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1 Introduction

A large literature builds on the CARA-Normal (negative-exponential utility with Gaussian
uncertainty) framework to explore interesting research questions related to various asset
markets. Examples are ample and date back at least to Grossman and Stiglitz (1980).
Valuable analytical tractability can usually be maintained by utilizing the moment generating
function(m.g.f.) of the normal distribution.

However most applications either assume a two-period static environment or force the
market to truncate in finite time; and models which allow the economy to be infinite-horizon
often either impose myopic traders who only care single-period investment horizons or let
the traders be infinitely lived. In this paper I relax the myopic assumption while keeping
traders finite lifespan1. In particular, I show the values of more trading opportunities are
state-contingent and arise naturally as non-central χ2-distributed. Analyticity thus can be
preserved by utilizing the m.g.f. of the non-central χ2-distribution.

To the best of my knowledge, this finite non-myopic extension along with the non-central
χ2 characterization of the investment opportunities is novel. Campbell and Kyle (1993)2

considers a similar model setup in continuous time and derives the investor’s value function
in terms of a quadratic form of normally distributed state variables. In contrast, the non-
central χ2-distributed investment opportunity raised in this paper is defined with respect to
each additional investment horizon. Furthermore, investors in Campbell and Kyle (1993)
are infinitely lived and their analytical result depends on noisy demand being an Ornstein-
Uhlenbeck process. The model presented in the current paper is in discrete time and works for
any covariance stationary ARMA dividend and noisy supply processes. There is a recent push
to move away from the joint normality assumption made in CARA-Normal models[Breon-
Drish (2015)] where the author explores a number of non-normal asset payoffs and supply
in the static Grossman-Stiglitz framework. I contribute to the literature by showing how
the non-central χ2 distribution appears as a direct result of letting traders value longer
investment horizons.

2 Model and Analysis

I consider a canonical CARA-Normal asset pricing model with stochastic dividend payments
and noisy supply. The economy is infinite horizon. A representative trader, who cares
N investment horizons, allocates wealth wt between a perfect-elastically supplied risk-free
asset(with constant gross return α = 1 + r > 1) and a risky asset to maximize her expected
CARA utility of terminal wealth −Et exp(−γwt+N). Both the dividend payment dt and the
supply st of the risky asset are stochastic and covariance stationary

dt = d+D(L)ǫdt , ǫdt ∼ N (0, σ2

d);

st = s+ S(L)ǫst , ǫst ∼ N (0, σ2

s);

1The economy is still infinite-horizon though.
2Also see Wang (1993) for a continuous version model with infinitely lived investors.



The covariance stationarity of dt and st imply both D(L), S(L) are (possibly) infinite-order
square summable polynomials in the lag operator L. For example, an AR(1) dt process

dt − d = ρ(dt−1 − d) + ǫdt

implies D(L) = 1

1−ρL
= 1 + ρL + ρ2L2 + ρ3L3 + ..., thus satisfies the square-summability

condition provided |ρ| < 1. The shocks {ǫdt , ǫ
s
t} are assumed orthogonal at all leads and lags.

I consider a simple information environment where traders know the dividend and supply
process D(L) and S(L) and observe the underlying shocks {ǫdt , ǫ

s
t} directly when they hit

the economy. More complicated structure such as incomplete and asymmetric information
will be left for future work.

The existing literature assumes N = 1 and interprets the above setup with a standard
OLG structure where agents live for two periods and only consume when old. It is natural
to allow traders to enjoy longer investment horizons3. One direct effect of allowing non-
myopic(N > 1 but finite) traders is now the investment horizons left will be a state variable.
Let xt,i denote variable x’s value at time t when the trader has i investment horizons left,
a rational expectation equilibrium(REE) consists of a price system PN = {pt,1, pt,2, ..., pt,N}
such that during any time, given PN , traders demand assets optimally and markets clear.
The representative trader remembers the entire history of shocks {ǫdt−j, ǫ

s
t−j}

∞

j=0 and believes
the equilibrium price process lies in the Hilbert space generated by them. This implies the
equilibrium price is a linear function of the underlying shocks and covariance stationary, i.e.,

pt,i = Fi(L)ǫ
d
t +Gi(L)ǫ

s
t .
4 (1)

Consequently, PN will be called linear and stationary if each element pt,i is linear and sta-
tionary. I start with the simplest non-myopic case N = 2. I solve the model by following
the frequency domain approach in Walker and Whiteman (2007) and backward induction.

2.1 The N = 2 non-myopic case

Assume the representative trader (re-)enters the market at time t and let Vt+1,1(wt+1,1) denote
the trader’s value function at time t+ 1. Then

Vt+1,1(wt+1,1) = max
zt+1,1

−Et+1 exp(−γwt+2,0),

s.t : wt+2,0 = zt+1,1(pt+2,2 + dt+2) + α(wt+1,1 − zt+1,1pt+1,1).

Notice that at t + 2 investment horizons left will become 2 again due to the trader’s re-
entrance into the market. The linearity of

pt,2 = F2(L)ǫ
d
t +G2(L)ǫ

s
t ; (2)

pt,1 = F1(L)ǫ
d
t +G1(L)ǫ

s
t . (3)

3Albagli (2015) considers the standard N -period OLG setup and discusses the risk sharing effects in an
asymmetric information environment for both AR(1) dividend and supply processes. To isolate these effects,
I instead maintain the representative trader assumption and only relax the “myopic” part. The technique
advocated here can be applied to this OLG environment as well.

4From now on we normalize d = 0, s = 0, which implies pi = 0. Consequently the derived equilibrium
price pt,i has an interpretation of deviations from its steady state.



implies wt+2,0 is normally distributed conditional on time t+ 1. Applying the normal m.g.f.
to −Et+1 exp(−γwt+2,0), the trader’s demand function follows from the first-order necessary
condition for maximization and is given by

z∗t+1,1 =
1

γvart+1(pt+2,2 + dt+2)
[Et+1(pt+2,2 + dt+2)− αpt+1,1]; (4)

which is a classic result where the demand function is optimized over the mean and variance
of excess returns. Market clearing requires z∗t+1,1 ≡ st+1 = S(L)ǫst+1. Plugging the prices
forms (2), (3) along with market clearing condition yield a set of equilibrium conditions
Fi(z), Gi(z), i = 1, 2 have to satisfy

z−1[F2(z)− F2(0)] + z−1[D(z)−D(0)] = αF1(z), (5)

z−1[G2(z)−G2(0)]− αG1(z) = γ[(F2(0) +D(0))2σ2

d +G2(0)
2σ2

s ]S(z). (6)

This in turn determines 5 ,

Vt+1,1(wt+1,1) = − exp{−γ
[

αwt+1,1 +
1

2
γvart+1(pt+2,2 + dt+2)s

2

t+1

]

}. (7)

While αwt+1,1 represents the “time” value of this investment horizon in which a risk-free
return α is guaranteed, 1

2
γvart+1(pt+2,2 + dt+2)s

2
t+1 represents the value of the investment

opportunity: It is non-negative and larger risk aversion γ indicates a higher value. Interest-
ingly, higher conditional variance vart+1(pt+2,2 + dt+2) induces a higher investment opportu-
nity value. I argue it is due to the stronger hedging effect it could bring to traders. Due
to the two-period investment horizons, investors will not operate on mean-variance frontier
during the first period and an inter-temporal hedging demand component has to be taking
into consideration. For instance, the traders might be willing to hold more risky asset than
the amount implied by a typical mean-variance demand of the form (4). The investors are
willing to do so if they expect the risky asset’s performance will be lackluster in the first
period but could bounce back in the second period due to the larger variance.

Finally, the investment opportunity value is state-contingent, depending on realized noisy
supply squared s2t+1. This is due to the no short sale constraint the model structure implicitly
assumed. As long as there is noisy supply(or demand6), prices will fluctuate and the traders
can always take long or short positions to take advantage of this investment opportunity.
Conditional on time t, s2t+1 is the only stochastic component in the investment opportunity
value7 and causes the value to be non-central χ2-distributed: while the χ2 attribute comes
from the normal variable st+1 squared, the non-central attribute originates from the potential
persistence the noisy supply process S(L) could have.

Consequently, at time t, the trader solves

Vt,2(wt,2) = max
zt,2

EtVt+1,1(wt+1,1),

5Vt+1,1(wt+1,1) = − exp
(

−γEt+1w
∗

t+2,0+
1

2
γ2vart+1(w

∗

t+2,0)
)

= − exp
(

−γ[αwt+1,1+z∗t+1,1(Et+1(pt+2,2+

dt+2)−αpt+1,1)]+
1

2
γ2vart+1(pt+2,2+dt+2)(z

∗

t+1,1)
2
)

= − exp{−γ
[

αwt+1,1+
1

2
γvart+1(pt+2,2+dt+2)(z

∗

t+1,1)
2
]

}
where I use the normal m.g.f. in the first equality, combine the budget constraint in the second one, and
utilize the first-order condition (4) in the last equality.

6When st < 0, traders become the net supplier of the risky asset.
7vart+1(pt+2,2 + dt+2) = (F2(0) +D(0))2σ2

d +G2(0)
2σ2

s is a constant by construction;



s.t : wt+1,1 = zt,2(pt+1,1 + dt+1) + α(wt,2 − zt,2pt,2).

Define At = L−1[S(L) − S0]ǫ
s
t , Bt = −γα, and Ct = −1

2
γ2(F2(0) + D(0))2σ2

d + G2(0)
2σ2

s),
At, Bt and Ct are all constants conditional on time t8 and

Vt+1,1(wt+1,1) = − exp(CtA
2

t ) exp(Btwt+1,1 + CtS
2

0(ǫ
s
t+1)

2 + 2CtAtS0ǫ
s
t+1). (8)

Thus, (8) depends on the realization of the supply shock squared (ǫst+1)
2 given S0 6= 0.9

Combining the budget constraint along with the prices forms (2), (3) and using the
assumption {ǫdt ,ǫ

s
t} are orthogonal at all leads and lags,

Vt,2(wt,2) = max
zt,2

− exp(CtA
2

t ) exp(αBwt,2)exp
(

− αBtzt,2[F2(L)ǫ
d
t +G2(L)ǫ

s
t ]
)

exp(Btzt,2L
−1[G1(L)−G1(0)]ǫ

s
t)Etexp(Btzt,2(F1(L) +D(L))ǫdt+1)

Etexp(CtS
2

0(ǫ
s
t+1)

2 + (Btzt,2G0 + 2CtAtS0)ǫ
s
t+1). (9)

The normal m.g.f. and the Wiener-Kolmogorov formula imply

Etexp(Btzt,2(F1(L) +D(L))ǫdt+1) = exp(
1

2
B2

t z
2

t,2(F1(0) +D(0))2σ2

d)

exp(Btzt,2L
−1[F1(L) +D(L)− F1(0)−D(0)]ǫdt ). (10)

Completing the squares of CtS
2
0(ǫ

s
t+1)

2 + (Btzt,2G0 + 2CtAtS0)ǫ
s
t+1 in the second expectation

term of (9) yields

Et exp(CtS
2

0(ǫ
s
t+1)

2 + (Btzt,2G0 + 2CtAtS0)ǫ
s
t+1) =

exp(−
(BtztG0 + 2CtAtS0)

2

4CtS
2
0

)Etexp(CtS
2

0(ǫ
s
t+1 +

BtztG0 + 2CtAtS0

2CtS
2
0

)2).

Since ǫst+1+
BtztG0+2CtAtS0

2CtS
2
0

∼ N(BtztG0+2CtAtS0

2CtS
2
0

, σ2
s),

(

ǫst+1
+

BtztG0+2CtAtS0

2CtS
2
0

σs

)2
follows a non-central

χ-square distribution with degree of freedom 1 and the non-centrality parameter
(

BtztG0+2CtAtS0

2CtS
2
0
σs

)2
.

Applying the m.g.f. of the non-central χ-squared distribution10 gives

Et exp(CtS
2

0(ǫ
s
t+1)

2 +BtztG0ǫ
s
t+1 + 2CtAtS0ǫ

s
t+1) =

(1− 2CtS
2

0σ
2

s)
−

1

2 exp
(σ2

s(BtztG0 + 2CtAtS0)
2

2− 4CtS
2
0σ

2
s

)

. (11)

Plugging (10),(11) along with At = L−1[S(L)− S0]ǫ
s
t into (9) and maximizing Vt,2(wt) with

respect to the choice variable zt,2 yields the trader’s first order condition. Imposing the

8At =
∞
∑

j=1

Sjǫ
s
t+1−j ; Ct = − 1

2
γ2vart+1(pt+2,2 + dt+2).

9S0 = 0 implies traders have one-period foresight of the noisy supply, under this scenario the normal
m.g.f. technique is still valid.

10If X ∼ χ2(r, λ), where r is the degree of freedom and λ is the non-centrality parameter, then MX(t) =
EetX = (1− 2t)−r/2exp{ λt

1−2t} for 1− 2t > 0.



market clearing condition zt,2 = S(L)ǫst yields another set of equilibrium conditions,

z−1[F1(z)− F1(0)] + z−1[D(z)−D(0)] = αF2(z), (12)

z−1[G1(z)−G1(0)]− αG2(z) = −Bt(F1(0) +D(0))2σ2

dS(z)−

Btσ
2
sG1(0)

2

1− 2CtS
2
0σ

2
s

S(z)−
2G1(0)CtS0σ

2
s

1− 2CtS
2
0σ

2
s

z−1[S(z)− S0]. (13)

Combining (5) and (12) and solving F1(L) in terms of F1(0), F2(0) and D(L) leads to a
unique set of {F ∗

1 (z), F
∗

2 (z)}

F ∗

1 (z) = F ∗

2 (z) =
D(α−1)−D(z)

1− αz
,

F ∗

1 (0) = F ∗

2 (0) = D(α−1)−D(0);

Combining (6) and (13) and letting M(z), N(z) denote the right hand side of (6), (13) give

G1(z) =
G1(0) + αzG2(0) + zN(z) + αz2M(z)

1− α2z2
,

G2(z) =
G2(0) + αzG1(0) + zM(z) + αz2N(z)

1− α2z2
.

Covariance stationarity of Gi(L) indicates analyticity of Gi(z) in the open unit disk |z| < 1,
which implies G1(0), G2(0) must be set to remove the poles at z = ±α−1[See Whiteman
(1983)], thus

G1(0) +G2(0) + α−1[N(α−1) +M(α−1)] = 0; (14)

G1(0)−G2(0)− α−1[N(−α−1) +M(−α−1)] = 0. (15)

The above equations are nonlinear since G2(0)
2 appears in M(z) while G1(0)

2 along with
G1(0) and G2(0)

2 terms appears in N(z)11. While it is solely the conditional variance
vart+1(pt+2,2 + dt+2) = D(α−1)2σ2

d + G2(0)
2σ2

s that introduces such nonlinearity in M(z)
when the trader has to liquidate her portfolio, it is the combination of the agent’s concerns
about the volatilities vart+1(pt+2,2 + dt+2), vart(pt+1,1 + dt+1) and her hedging motives that
introduce more complicated nonlinearities in N(z). To see this more explicitly, N(z) can be
written as

N(z) =
γ2S0σ

2
sG1(0)vart+1(pt+1,2 + dt+2)

1 + γ2S2
0σ

2
svart+1(pt+1,2 + dt+2)

[z−1(S(z)− S0)−

γαS0G1(0)S(z)] + γαvart(pt+1,1 + dt+1);

The mixed effects of trader’s concerns on market volatility and her hedging motives can be
seen as vart+1(pt+1,2 + dt+2) appearing both in the denominator and the numerator of the
first term in the above expression. Under what scenarios one effect dominates the other is
an interesting question and deserves future investigation.

11recall that in (13) Ct involves G2(0)
2;
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Figure 1: Two Equilibria with Non-Myopic Traders: This figure plots solution sets
of the two non-linear equations specified in (14), (15). Parameter values: N = 2, r =
0.02, γ = 1.5, σd = 0.03, σs = 0.1 with dt = 0.9dt−1 + ǫdt , st = −0.01st−1 + ǫst . There are two
intersections and each defines an equilibrium price: {G∗

1(0), G
∗

2(0)} = {−0.095,−0.097} or
{-149.427, -101.104 }.

A nonlinear solver indicates there are two sets of solutions {G∗

1(0), G
∗

2(0)} satisfying
the equations (14), (15) thus we will have two sets of {G∗

1(z), G
∗

2(z)}, which determines
two equilibria P2. The multiplicity result resonates with the myopic model. Furthermore,
the equilibria can be characterized as a stable low-volatility price, and a unstable high-
volatility price [Walker and Whiteman (2007), Albagli (2015)]. For an illustrative example,
see Figure 1. A calculation of Vt,2(wt,2) implies the above backward induction procedure can
be continued to allow more investment horizons(N > 2). I leave the general N case to future
work.

The non-myopic cases have a modified two-period OLG interpretation in which traders
will have N opportunities to refresh their portfolios during young. This interpretation is
convenient in explaining how the underlying demographics shapes the investors’ beliefs:
Traders are sure prices will transit naturally from pt,N to pt+1,N−1 to pt+2,N−2...during their
investment horizons; and when they have to liquidate and quit the market(either temporarily
or permanently), they also know the new generation will hold the same belief such that prices
in the next period will start from pt+N,N again. Overtime, prices of the risky asset will display
“cyclical” patterns and time-varying conditional variances. The price system PN , however,
is still stationary. While the CARA-Normal assumptions preserves the linearity of prices, the
stationary demographics behind the OLG structure ensures prices in the future will behave
in similar pattens as the past and today’s, which provides a necessary force to anchor the
forward-looking traders’ expectations and guarantees the stationarity of the price system in
such dynamic settings.



3 Conclusion

In a canonical dynamic CARA-Normal asset pricing framework, I relax the myopic assump-
tion and solve the model analytically by showing the values of trading opportunities are
non-central χ2 distributed. More investment horizons introduce complicated nonlinear mixed
effects of traders’ concerns on market volatilities and their hedging motives. The analyti-
cal results derived for general dividend and supply processes are valuable for topics like
persistence liquidity trading and asymmetric information.
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