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1. Introduction 

Consider an election with n voters when each voter has a complete preference ranking on three 

candidates {𝐴, 𝐵, 𝐶}.  With complete preference rankings, individual voter indifference between 

candidates is prohibited; and intransitive, or cyclic, individual preferences are not allowed.  

When we restrict attention to the limiting case of a large electorate as 𝑛 → ∞, the six feasible 

candidate preference rankings for individual voters are shown in Figure 1: 

   A A B C B C 

   B C A A C B 

   C B C B A A 

   𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 

Figure 1. Feasible voter preference rankings on candidates with three candidates. 

The 𝑝𝑖 terms denote the proportion of the n voters with the associated ith candidate preference 

ranking for 1 ≤ 𝑖 ≤ 6 in a given election as 𝑛 → ∞. Let 𝐴 ≻ 𝐵 denote an individual voter’s 

preference on a pair of candidates, such that Candidate A is preferred to Candidate B.  With this 

definition, 𝑝1 voters have preferences with  𝐴 ≻ 𝐵 , 𝐴 ≻ 𝐶 and 𝐵 ≻ 𝐶.  A voting situation 

defines a specific outcome of an election for which n voters have candidate preferences with  

∑ 𝑝𝑖 = 16
𝑖=1 .  Any given voting situation is therefore completely specified by a six-dimensional 

vector p with its six associated 𝑝𝑖 components from Figure 1. We define P as the space of all 

possible p with ∑ 𝑝𝑖 = 16
𝑖=1 . 

A pairwise majority preference AMB exists on the pair of Candidates A and B if more voters 

have 𝐴 ≻ 𝐵 than those who have 𝐵 ≻ 𝐴, with 𝑝1 + 𝑝2 + 𝑝4 > 𝑝3 + 𝑝5 + 𝑝6.  Candidate A is the 

Condorcet Winner (CW) in a voting situation if it defeats both remaining candidates by pairwise 

majority preference, with both AMB and AMC. The CW would obviously be a good candidate to 

select as the winner in an election, but it is well known that a CW does not always exist. That is, 

voting situations can exist where pairwise majority cycles are possible, such as when AMB, BMC 

and CMA.  The existence of such cyclic majorities is known as an occurrence of Condorcet’s 

Paradox.  Most voting rules will not always elect the CW, but their overall propensity to do so is 

measured by Condorcet Efficiency, which is formally defined as the conditional probability that 

a specified voting rule will elect the CW, given that a CW does exist. 

We consider voting rules in the context of Weighted Scoring Rules of the form 𝑅𝑢𝑙𝑒(𝜆). Any 

𝑅𝑢𝑙𝑒(𝜆) is defined in terms of weights (1, 𝜆, 0); and every voter assigns 1 point to their most 

preferred candidate, 𝜆 points to their middle ranked candidate and 0 points to their least preferred 

candidate. The candidate that receives the greatest number of accumulated points from all voters 

is declared as the winner. 𝑅𝑢𝑙𝑒(0) is equivalent to the commonly used Plurality Rule (PR), 

𝑅𝑢𝑙𝑒(1) is equivalent to Negative Plurality Rule (NPR) or Anti-Plurality Rule and 𝑅𝑢𝑙𝑒(1/2) is 

the well-known Borda Rule (BR).  Extensive analysis has been performed to show that BR has 

many excellent properties when it is compared to other 𝑅𝑢𝑙𝑒(𝜆) [see for example Saari (1990)]. 



 

Our objective is to consider the impact that the selection of 𝜆 has on the resulting Condorcet 

Efficiency of the associated 𝑅𝑢𝑙𝑒(𝜆). 

2. Representations for Condorcet Efficiency with IAC 

The Condorcet Efficiency of any 𝑅𝑢𝑙𝑒(𝜆) will clearly be dependent on the probability that 

various voting situations will be observed. One of the most common assumptions regarding this 

probability is the Impartial Anonymous Culture Condition (IAC), which is equivalent to 

assuming that all possible 𝒑𝜖𝑷 are equally likely to be observed when 𝑛 → ∞. Probabilities of 

election outcomes can therefore be obtained from the consideration of volumes of subspaces in P 

with the assumption of IAC. 

Diss and Gehrlein (2012) use results from Sommerville (1958, pgs. 125-126) to show that the 

entire volume of P is given by 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶) with 

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶) =
√6

120
.                 (1) 

Cervone et al (2005) considers the Condorcet Efficiency of Weighted Scoring Rules by 

determining the volume of two subspaces of P. The first is the volume of the subspace for which 

Candidate A is the CW with IAC, which we denote as 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊), with 

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊) =
√6

384
.               (2) 

The second subspace considers voting situations for which Candidate A is both the CW and the 

winner by 𝑅𝑢𝑙𝑒(𝜆), with a volume denoted by 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑅𝑢𝑙𝑒(𝜆)): 

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑅𝑢𝑙𝑒(λ)) =
√6(8𝜆7+28𝜆6+65𝜆5−1036𝜆4+1534𝜆3+335𝜆2−1647𝜆+714)

155520(𝜆+1)(𝜆−2)(𝜆−1)3 ,        (3) 

         for 0 ≤ 𝜆 ≤ 1/2. 

   =
√6(192𝜆8+5984𝜆7−16764𝜆6+4496𝜆5+17522𝜆4−8395𝜆3+1163𝜆2−126𝜆+8)

622080𝜆3(𝜆+1)(𝜆−2)(1−3𝜆)
, 

for 1/2 ≤ 𝜆 ≤ 1. 

The IAC assumption is symmetric with regards to Candidates A, B and C, so the Condorcet 

Efficiency 𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) of 𝑅𝑢𝑙𝑒(𝜆) with IAC as 𝑛 → ∞ is obtained from   

𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) =
𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶,𝐴=𝐶𝑊=𝑅𝑢𝑙𝑒(𝜆))

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶,𝐴=𝐶𝑊)
.             (4) 

The representations from (2), (3) and (4) are used to obtain values of 𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) for each 

𝜆 = 0(. 05)1 and the results are listed in Table 1. 

 



 

𝜆 𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) 𝐶𝐸(𝑀𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) λ 𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) 𝐶𝐸(𝑀𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) 

0.00 0.8815 0.7668 0.50 0.9111 0.8315 

0.05 0.8899 0.7851 0.55 0.8943 0.7947 

0.10 0.8979 0.8027 0.60 0.8720 0.7461 

0.15 0.9055 0.8192 0.65 0.8461 0.6896 

0.20 0.9123 0.8342 0.70 0.8176 0.6273 

0.25 0.9182 0.8470 0.75 0.7874 0.5612 

0.30 0.9227 0.8567 0.80 0.7560 0.4926 

0.35 0.9252 0.8622 0.85 0.7240 0.4228 

0.40 0.9249 0.8617 0.90 0.6919 0.3528 

0.45 0.9208 0.8527 0.95 0.6603 0.2838 

0.50 0.9111 0.8315 1.00 0.6296 0.2167 

Table 1. Condorcet Efficiency of 𝑅𝑢𝑙𝑒(𝜆) with IAC and MIAC. 

The results from Table 1 show that 𝐶𝐸(𝐼𝐴𝐶, 𝑃𝑅) = .8815, 𝐶𝐸(𝐼𝐴𝐶, 𝐵𝑅) = .9111 and 

𝐶𝐸(𝐼𝐴𝐶, 𝑁𝑃𝑅) = .6296.  The value of 𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) is maximized at 𝜆 ≈ .37228, so BR 

does not maximize Condorcet Efficiency with IAC. Table 1 shows that  𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) is 

quite stable for a wide range of values around the efficiency maximizing 𝜆.  This indicates that 

the selection of 𝜆 for a voting rule with IAC is not very critical in regions that are not relatively 

far removed from the most efficient 𝜆, particulary for 𝜆 that are closer to PR.   

Given this background, Gehrlein et al (2011) found that there were identifiable subsets of voting 

situations that are based on the proximity of the voting situations to having perfectly single-

peaked or perfectly single-dipped preferences, such that these voting situations resulted in 

extremely poor expected performance for PR and NPR on the basis of Condorcet Efficiency with 

IAC. The same outcome was never observed for BR, which always performed quite well. The 

results in Table 1 do not seem to reflect nearly as strongly just how poorly PR and NPR can 

perform in some scenarios relative to BR with IAC. 

3. Another Perspective on Probability Representations with MIAC 

We begin the new focus of the current study by considering a modification of IAC to account for 

this observation. This modification is based on the idea that there are many voting situations in P 

for which every 𝑅𝑢𝑙𝑒(𝜆) for 0 ≤ 𝜆 ≤ 1 will elect the same winner. It is well known that the 

same winner will be elected for all 𝑅𝑢𝑙𝑒(𝜆) in a three-candidate voting situation if that candidate 

is the winner by both PR and NPR [see for example, Moulin (1988)], and the limiting probability 

that PR and NPR both elect the same winner is found to be .5231 with IAC in Gehrlein (2002). 

What if PR and NPR only have their greater than anticipated values of Condorcet Efficiency 

with IAC in Table 1 as a result of the fact that there is a relatively large probability that every 

𝑅𝑢𝑙𝑒(𝜆) will elect the same winner? 

For example, NPR already has a relatively weak Condorcet Efficiency value of 63% with IAC. If 

the 52% of voting situations are excluded from consideration when NPR and every other 



 

𝑅𝑢𝑙𝑒(𝜆) elect the same winner, to make the selection of 𝜆 irrelevant, the true performance of 

NPR in relevant scenarios will be measured.  NPR might therefore be shown actually to have 

abysmal expected performance in the relevant scenarios, rather than just having weak 

performance overall.  The same general argument can be made for all 𝑅𝑢𝑙𝑒(𝜆) when we wish to 

measure their relative performance on the basis of Condorcet Efficiency. 

It is important to note that the removal from consideration of the subset of voting situations for 

which all 𝑅𝑢𝑙𝑒(𝜆) elect the same winner does not have the same impact on the Condorcet 

Efficiency of all voting rules, so it is not a trivial exercise to consider the impact of this extension 

of IAC.  In order to illustrate this point, we temporarily leave aside the case of 𝑛 → ∞ and 

suppose instead that the number of voters is 𝑛 = 3. A given voting situation is now defined by 

(𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6). The 𝑛𝑖 terms denote the number of voters with the associated ith 

candidate preference ranking for 1 ≤ 𝑖 ≤ 6 in a given election with three voters from Figure 1.  

The total number of possible voting situations is 
(𝑛+1)(𝑛+2)(𝑛+3)(𝑛+4)(𝑛+5)

120
= 56. Two of these 

voting situations (1,0,0,1,1,0) and (0,1,1,0,0,1) do not have a CW, so they are excluded from 

any further consideration. Without any loss of generality, we suppose that the CW is Candidate 

A, which occurs in 18 of these 54 remaining voting situations. Candidate A is found to be the 

strict winner by PR, NPR, and BR respectively in 16, 8, and 16 of these 18 voting situations. A 

strict winner is elected without it having any ties with other candidates. These values are used 

with the symmetry that IAC has with respect to candidates to obtain the Condorcet Efficiency of 

PR (
16

18
= .889), NPR (

8

18
= .444) and BR (

16

18
= .889) with IAC for 𝑛 = 3. 

Among these 18 voting situations, there are six
1
 that will lead to the election of the same strict 

winner for every Rule (𝜆) for 0 ≤ 𝜆 ≤ 1, based on the fact that the same candidate is elected by 

PR and NPR.  This is the CW Candidate A in each case, but it is possible that PR and NPR could 

both select the same winner that is not the CW.  In other words, the selection of 𝑅𝑢𝑙𝑒(𝜆) has no 

impact on the ultimate election result (Candidate A wins) in one-third of these possible voting 

situations since six out of 18 voting situations are found among these cases.  

However, if the preference structure of voters leads to a voting situation such as the one given by 

(2,0,0,0,0,1), the analysis is quite different. The CW is still the same Candidate A and the 

selection of a Rule (𝜆) has a clear impact on the selection (or not) of the CW since the winner of 

PR and BR both select A to have a positive impact on their Condorcet Efficiencies.  But, NPR 

selects Candidate B to have a negative impact on its Condorcet Efficiency.      

If the six voting situations that are irrelevant to the selection of Rule (𝜆) are removed from 

consideration for the example with 𝑛 = 3, the modified voting rule efficiencies become: PR 

(
10

12
= .833), NPR (

2

12
= .167) and BR (

10

12
= .833).  All of the efficiencies are reduced, but the 

                                                 
1
 These voting situations are (2,1,0,0,0,0), (1,2,0,0,0,0), (0,2,1,0,0,0), (2,0,0,1,0,0), (1,1,1,0,0,0), and 

(1,1,0,1,0,0) 



 

impact is particularly dramatic for NPR, which shows only a 16% chance of selecting the CW 

for voting situations where the selection of Rule (𝜆) might actually have an impact on the 

election outcome.  This strongly suggests that there is absolutely no reason to ever consider the 

possibility of using NPR, or anything like it, in three-voter elections. It does perform well when 

everything works, but it performs very poorly when the voting rule selection actually makes a 

difference. The obvious question is to wonder if this dramatic outcome is simply an aberration 

that results from the fact that we are only considering the special case with 𝑛 = 3. 

The Modified Impartial Anonymous Culture Condition (MIAC) follows what was done in the 

example with 𝑛 = 3 and only considers voting situations in 𝑷′ ⊂ 𝑷 for which 𝑅𝑢𝑙𝑒(𝜆) does not 

elect the same winner for all 0 ≤ 𝜆 ≤ 1. As in the case of IAC, it is assumed with MIAC that all 

possible voting situations in 𝑷′ are equally likely to be observed, and we now start to focus again 

on the limiting case as 𝑛 → ∞.  

So, we begin our analysis with MIAC by finding the volume 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝑃𝑅 = 𝑁𝑃𝑅) of 

the subspace of IAC voting situations in 𝑷 for which Candidate A is the winner by both PR and 

NPR. This is done with the same general procedure that was used in Cervone et al (2005) to 

obtain the volumes that are given above in (1), (2) and (3).  Precise details of how this procedure 

is implemented are not included in the current study since they can be found at the original 

source.   However, we do present an outline of how the results were obtained for the simplest 

case that is considered in this study in order to provide a basic illustration of how the procedure 

works. 

The volume of the possible IAC voting situations in P is defined in six-dimensional space with 

six vertices 𝜐𝑖
0 at: 

𝜐1
0 = [1,0,0,0,0,0]   𝜐3

0 = [0,0,1,0,0,0]  𝜐5
0 = [0,0,0,0,1,0] 

𝜐2
0 = [0,1,0,0,0,0]  𝜐4

0 = [0,0,0,1,0,0]  𝜐6
0 = [0,0,0,0,0,1]. 

This space corresponds to a five-dimensional simplex 𝛥5 and its volume is given above in (1).  

Suppose that Candidate A is the winner by both PR and NPR. This requires that: 

𝑝1 + 𝑝2 − 𝑝3 − 𝑝5 > 0 (A beats B by PR)          (5) 

𝑝1 + 𝑝2 − 𝑝4 − 𝑝6 > 0 (A beats C by PR)          (6) 

𝑝2 + 𝑝4 − 𝑝5 − 𝑝6 > 0 (A beats B by NPR)          (7) 

𝑝1 + 𝑝3 − 𝑝5 − 𝑝6 > 0 (A beats C by NPR).          (8) 

Hyperplane H1 is then defined from (5) with  

    H1: 𝑝1 + 𝑝2 − 𝑝3 − 𝑝5 = 0.            (9) 



 

This hyperplane identifies voting situations for which there is a PR tie between Candidates A and 

B, and it is used to partition 𝛥5 into two subspace regions for which 𝑝1 + 𝑝2 − 𝑝3 − 𝑝5 > 0 (with 

A beats B by PR) and 𝑝1 + 𝑝2 − 𝑝3 − 𝑝5 < 0  (with B beat A by PR).  The partition subspace for 

which B beat A by PR is discarded along with all vertices that are included in it, and we then use 

a procedure in Cervone et al (2005) to determine all of the new vertices that are created when H1 

cuts some of the edges of 𝛥5 to form new faces in the remaining subspace in which A beats B by 

PR.  

Hyperplane H2 is then defined from (6) in the same manner to determine the voting situations for 

which there is a PR tie between A and C, with 

    H2: 𝑝1 + 𝑝2 − 𝑝4 − 𝑝6 = 0.          (10) 

Then, H2 is used to partition the simplex partition component with A beats B by PR into the 

subspace in which both A beats B by PR and A beats C by PR (with 𝑝1 + 𝑝2 − 𝑝4 − 𝑝6 > 0) and 

the subspace in which both A beats B by PR and C beats A by PR (with 𝑝1 + 𝑝2 − 𝑝4 − 𝑝6 < 0)  

This second subspace is discarded along with all vertices that are included in it, and we then 

determine all of the new vertices that are created when H2 cuts some edges of the simplex 

partition component with A beats B by PR to form new faces in the remaining subspace in which 

A beats both B and C by PR.   

The partitioning process continues in the same fashion by using hyperplanes H3 from (7) and H4 

from (8), to find the polyhedron that remains for the subset of voting situations from P for which 

Candidate A beats both B and C by both PR and NPR. The final polyhedron that remains from 

this partitioning has 18 vertices 𝜐𝑖
1, with: 

𝜐1
1 = [

1

3
, 0,0,

1

3
,

1

3
, 0]   𝜐7

1 = [
1

3
,

1

3
, 0,0,

1

3
, 0]  𝜐13

1 = [
1

2
, 0 ,0,

1

2
, 0,0] 

𝜐2
1 = [0,1,0,0,0,0]   𝜐8

1 = [0,
1

2
,

1

4
, 0,

1

4
, 0]  𝜐14

1 = [0,
1

3
,

1

3
,

1

3
, 0,0] 

𝜐3
1 = [1,0,0,0,0,0]   𝜐9

1 =  [
1

3
,

1

6
, 0,

1

6
, 0,

1

3
]  𝜐15

1 = [
1

3
, 0,

1

3
,

1

6
, 0,

1

6
] 

𝜐4
1 = [0,

1

2
 ,

1

2
, 0,0,0]   𝜐10

1 = [0,
1

3
,

1

3
, 0,0,

1

3
]  𝜐16

1 = [
1

6
,

1

3
,

1

6
, 0,

1

3
, 0] 

𝜐5
1 = [

1

3
, 0,

1

3
,

1

3
, 0,0]   𝜐11

1 = [0,
1

2
, 0 ,

1

2
, 0,0]  𝜐17

1 = [
1

3
,

1

3
, 0,0,0,

1

3
] 

𝜐6
1 = [

1

2
, 0,0,

1

4
, 0,

1

4
]   𝜐12

1 = [
1

2
, 0 ,

1

2
, 0,0,0]  𝜐18

1 = [0,
1

3
,

1

6
,

1

3
,

1

6
, 0] 

 

The volume of the polyhedron that is bounded by these vertices is:  

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝑃𝑅 = 𝑁𝑃𝑅) =
113√6

77760
.            (11) 

The symmetry of IAC with respect to the candidates along with (1) and (11) leads to a 

representation for the probability that all 𝑅𝑢𝑙𝑒(𝜆) elect the same winner that is denoted by 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐼𝐴𝐶, 𝑃𝑅 = 𝑁𝑃𝑅) with 



 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐼𝐴𝐶, 𝑃𝑅 = 𝑁𝑃𝑅) =
3𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶,𝐴=𝑃𝑅=𝑁𝑃𝑅)

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶)
=  

113

216
≈ .523.        (12) 

The probability in (12) clearly shows that there is a significant likelihood that all 𝑅𝑢𝑙𝑒(𝜆) elect 

the same winner.
2
  As mentioned above, the value in (12) verifies a known result from Gehrlein 

(2002). We chose not to use that source as a starting point here in order to illustrate how the 

procedure from Cervone et al (2005) works on the simplest possible problem that we are 

considering, and because it would still be necessary to work from that starting point back to the 

volumes that are used in the remainder of the study.  It then follows from definitions that the 

MIAC subspace volume is given by 

𝑉𝑜𝑙𝑢𝑚𝑒(𝑀𝐼𝐴𝐶) = 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶) − 3𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 =  𝑃𝑅 = 𝑁𝑃𝑅) =
103√6

25920
.       (13) 

4. Condorcet Efficiency with MIAC 

In order to develop a representation for the Condorcet Efficiency of 𝑅𝑢𝑙𝑒(𝜆) with MIAC, we 

first need to determine the volume of the IAC subspace for which the same winner is elected by 

both PR and NPR when a CW exists.   Two subspace volumes are required to obtain that. The 

first volume is 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 =  𝑃𝑅 = 𝑁𝑃𝑅) in which Candidate A is the CW that is 

also elected by every 𝑅𝑢𝑙𝑒(𝜆). The partitioning process that was described above is used to find 

the 29 𝜐𝑖
2 vertices of the resulting polyhedron: 
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The volume of the polyhedron defined by these vertices is given by: 

                                                 
2
 It is shown in Gehrlein and Fishburn (1983) that this limiting probability with the well-known assumption of 

Impartial Culture (IC) with complete independence among voters’ preferences has 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐼𝐶, 𝑃𝑅 = 𝑁𝑃𝑅) ≈
.535, so the degree of dependence that IAC introduces among voters’ preferences has a remarkably small impact on 

this probability. 



 

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 =  𝑃𝑅 = 𝑁𝑃𝑅) =
3437√6

2488320
.           (14) 

The second additional volume that is required is 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊, 𝐵 =  𝑃𝑅 = 𝑁𝑃𝑅) in 

which Candidate A is the CW while B is elected by all 𝑅𝑢𝑙𝑒(𝜆). The same partitioning process 

that was described above is used to find the 13 𝜐𝑖
3 vertices of the resulting polyhedron: 

𝜐1
3 = [0,

1

2
 ,

1

2
, 0,0,0]   𝜐6

3 = [
1

4
,

1

4
,

1

4
, 0,0,

1

4
]  𝜐11

3 = [
1

6
,

1

6
,

1

3
,

1

12
, 0,

1

4
] 

𝜐2
3 = [

1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
]  𝜐7

3 = [
1

4
,

1

8
,

1

4
,

1

8
, 0,

1

4
]  𝜐12

3 = [
1

6
,

1

6
,

1

3
,

1

6
, 0,

1

6
] 

𝜐3
3 = [

1

3
, 0,

1

3
,

1

6
, 0,

1

6
]   𝜐8

3 = [0,
1

2
,

1

4
, 0,

1

4
, 0]  𝜐13

3 = [
1

6
,

1

3
,

1

6
, 0,

1

6
,

1

6
] 

𝜐4
3 = [

1

8
,

1

4
,

3

8
, 0,0,

1

4
]   𝜐9

3 = [
1

2
, 0,

1

2
, 0,0,0] 

𝜐5
3 = [

1

12
,

1

3
,

1

4
, 0,

1

6
,

1

6
]   𝜐10

3 = [
1

6
,

1

3
,

1

6
, 0,

1

3
, 0] 

The volume of the polyhedron defined by these vertices is given by: 

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊, 𝐵 =  𝑃𝑅 = 𝑁𝑃𝑅) =
19√6

1244160
.          (15) 

Let 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊, 𝑃𝑅 ≠ 𝑁𝑃𝑅) denote the volume of the space of MIAC that has 

Candidate A as the CW. By definition and MIAC symmetry with respect to candidates, with (2), 

(14) and (15) 

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊, 𝑃𝑅 ≠ 𝑁𝑃𝑅) =  𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊) −              (16)  

        𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑃𝑅 = 𝑁𝑃𝑅) − 2𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊, 𝐵 =  𝑃𝑅 = 𝑁𝑃𝑅) =
989√6

829440
. 

The subspace of 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊, 𝑃𝑅 ≠ 𝑁𝑃𝑅) for which Candidate A is both the CW and 

the winner by 𝑅𝑢𝑙𝑒(𝜆) has 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑅𝑢𝑙𝑒(λ), 𝑃𝑅 ≠ 𝑁𝑃𝑅), and  

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑅𝑢𝑙𝑒(λ), 𝑃𝑅 ≠ 𝑁𝑃𝑅) = 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑅𝑢𝑙𝑒(λ)) −       (17) 
                                                              𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 =  𝑃𝑅 = 𝑁𝑃𝑅). 

We note for clarity that no adjustment is made to 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑅𝑢𝑙𝑒(λ)) in (17) to 

account for 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊, 𝐵 =  𝑃𝑅 = 𝑁𝑃𝑅) as we did in (16). This follows from the 

fact that if B wins by both PR and NPR then B must be the winner for all 𝑅𝑢𝑙𝑒(λ), not A; so no 

such voting situations are included in 𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶, 𝐴 = 𝐶𝑊 = 𝑅𝑢𝑙𝑒(λ)).  

The Condorcet Efficiency of 𝑅𝑢𝑙𝑒(λ) with MIAC is obtained from 

𝐶𝐸(𝑀𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) =
𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶,𝐴=𝐶𝑊=𝑅𝑢𝑙𝑒(λ),𝑃𝑅≠𝑁𝑃𝑅)

𝑉𝑜𝑙𝑢𝑚𝑒(𝐼𝐴𝐶,𝐴=𝐶𝑊,𝑃𝑅≠𝑁𝑃𝑅)
.          (18) 

Using (18) with (3), (14), (16) and (17): 

𝐶𝐸(𝑀𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) =
128𝜆7+448𝜆6−2397𝜆5−2828𝜆4+10796𝜆3−1514𝜆2−9167𝜆+4550

2967(𝜆+1)(𝜆−2)(𝜆−1)3
 ,       (19) 



 

         for 0 ≤ 𝜆 ≤ 1/2. 

   =
768𝜆8+23936𝜆7−56745𝜆6+4236𝜆5+52903𝜆4−26706𝜆3+4652𝜆2−504𝜆+32

2967𝜆3(𝜆+1)(𝜆−2)(1−3𝜆)
, 

for 1/2 ≤ 𝜆 ≤ 1. 

The representation in (19) is used to obtain values of 𝐶𝐸(𝑀𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) for each 𝜆 = 0(. 05)1 

and the results are listed in Table 1.
3
 

5. Conclusion 

A comparison of 𝐶𝐸(𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆))  and 𝐶𝐸(𝑀𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) shows that the same value of 𝜆 

maximizes both of the cases of IAC and MIAC. However, the results in Table 1 clearly indicate 

that the selection of λ for 𝑅𝑢𝑙𝑒(𝜆) has a much greater impact on the election outcome on voting 

situations for which the selection of λ makes a difference than might have been concluded from 

earlier studies.  This is particularly true for values of λ that are larger than the most efficient λ. 
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3
 It is not practically possible to make comparisons of 𝐶𝐸(𝑀𝐼𝐴𝐶, 𝑅𝑢𝑙𝑒(𝜆)) to similar results with IC, as we did 

above for 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐼𝐶, 𝑃𝑅 = 𝑁𝑃𝑅), since this now would for example require computations on six-dimensions 

to simultaneously make A the CW, PR Winner and NPR Winner over both B and C with IC. While it is possible to 

perform computations on associated IC positive-orthant probabilities for up to five dimensions, any extension to six 

dimensions is quite intractable. 




