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Abstract
We empirically analyze aggregate price setting by means of a nonparametric representation of the structural New

Keynesian Phillips curve derived from Calvo (1983) pricing for a large cross-section of 14 industrialized economies.

State-dependence of the Calvo parameter is tested in a functional-coefficient regression framework. We reject state-

invariant pricing. Moreover, problems reported in the extant literature of insignificant and implausible estimates of the

Phillips-curve relation are mitigated in the state-dependent specification.

Matthias Hartmann gratefully acknowledges the financial support received from the Fritz-Thyssen-Stiftung and Steffen Ahrens thanks the

Deutsche Forschungsgemeinschaft (SFB-649) for financial support. The comments of an anonymous referee are gratefully acknowledged.

Citation: Steffen Ahrens and Matthias Hartmann, (2015) ''Cross-sectional evidence on state-dependent versus time-dependent price setting'',

Economics Bulletin, Volume 35, Issue 4, pages 2701-2709

Contact: Steffen Ahrens - steffen.ahrens@tu-berlin.de, Matthias Hartmann - matthias.hartmann@awi.uni-heidelberg.de.

Submitted: February 17, 2015.   Published: December 13, 2015.

 

   



1. Introduction

The most widely used price-updating mechanism in theoretical macroeconomic models is the

Calvo (1983) staggered contracts model where a constant Calvo parameter determines a (fixed)

share of randomly drawn firms which adjust prices at each time instance. This is referred to

as time-dependent price adjustment. Despite its popularity, constancy of the Calvo parameter is

criticized as a rather restrictive description of price setting (Wolman 1999, Cogley and Sbordone

2005, Canova, 2006, and Fernández-Villaverde and Rubio-Ramírez 2008).

For time-dependent price-setting models firms’ price changing decisions are independent of

the economic state, but depend exclusively on time. This assumption is vulnerable to the Lucas

critique. The theoretical literature describes several settings in which, e.g., firms have an incentive

to respond to higher inflation rates with more frequent price adjustments (Romer 1990, Dotsey et

al. 1999, and Golosov and Lucas 2007). Another often described influence on price adjustment

is inflation uncertainty (IU henceforth). In this case, however, incentives are ambiguous. While

IU may cover extraordinary increases in firms’ markup over marginal cost, it could also encourage

search effort and price monitoring by customers (Bénabou 1992). The former creates an incentive

to increase the frequency of price adjustments, while the latter creates an incentive to decrease it.

In this paper, we implement a testing procedure by means of a nonparametric representation

of the standard structural form New Keynesian Phillips curve (NKPC). This functional-coefficient

(FC) regression model allows to express the Calvo parameter as a functional of observable factor

variables such as inflation, IU, or both factors simultaneously (Danziger 1983). We focus on

inflation and IU, since these variables are in many theoretical studies described as potential factors

which may affect price updating, following Romer (1990), Bénabou (1992), and Danziger (1983)

inter alia. Moreover, since central banks are typically held accountable in the first place for the

dynamics of inflation and IU, this choice also allows to establish a clear-cut relation between

changes in price setting and the decisions of monetary policy. The FC regression we propose nests

both state- and time-dependent pricing rules. The case of time-dependent pricing corresponds to

testing the null hypothesis of parameter constancy against the alternative hypothesis of inflation-

or IU-induced price revisions.

The contribution of this paper is twofold. First, we document state-dependence of the Calvo

parameter with respect to inflation and IU for 14 industrialized economies. Second, we contribute

to the literature of single equation estimation of the NKPC via the generalized method of moments

(GMM), pioneered by Galí and Gertler (1999). We show that our state-dependent NKPC estima-

tion mitigates the recurring finding of insignificant and implausible NKPC parameter estimates

(Wolman 1999), which have led to doubts about the empirical validity of the NKPC.

Few empirical macroeconomic studies document instability of the Calvo parameter. Cogley

and Sbordone (2005) find minor differences in the Calvo parameter across regimes estimating a

generalized NKPC. In a New Keynesian model, Canova (2006) reports evidence similar to Cogley

and Sbordone (2005), while Fernández-Villaverde and Rubio-Ramírez (2008) find that fluctuations

in the Calvo parameter are negatively correlated with inflation. In contrast to these studies, we

retain the standard NKPC framework of Galí and Gertler (1999). To test for state-dependence of

the Calvo parameter, we employ a formal and robust statistical method which also acknowledges

the role of potential heteroscedasticity in the NKPC disturbances.

Our results are important for the analysis of monetary policy. First, output effects of mone-

tary shocks are typically weaker and less persistent for state-dependent models relative to time-



dependent models (Golosov and Lucas 2007). Second, the welfare implications under state- and

time-dependent approaches coincide only under the very restrictive assumption of an efficient

steady state (Lombardo and Vestin 2008).

2. Empirical Approach

The NKPC which allows for a FC relationship of the Calvo parameter, i.e. θ = θ(ωi,t−1), reads

as:

πit = βπi,t+1 +
(1− θ(ωi,t−1))(1− θ(ωi,t−1)β)

θ(ωi,t−1)
sit + εit, i = 1, ..., N, t = 1, ..., T, (1)

where πit denotes inflation in quarter t and country i, sit real marginal costs and β < 1 the discount

parameter. Equation (1) is a generalization of the standard NKPC (Galí and Gertler 1999) along

the lines of Dotsey et al. (1999), who were among the first to derive a NKPC representation with a

state-variant Calvo parameter which nests the conventional time-dependent NKPC as a restrictive

special case. In equation (1) the Calvo parameter θ(ωi,t−1) ∈ [0, 1] depends on two predetermined

variables: ωi,t−1 = (w
(1)
i,t−1, w

(2)
i,t−1)

′, where w
(1)
i,t−1 = πi,t−1 and w

(2)
i,t−1 = IUi,t−1. IU is measured

as IUi,t−1 = |∆πi,t−1| = |πi,t−1 − πi,t−2|, the absolute error of a random walk forecast, one of

the most successful devices to predict inflation (Canova 2007). To account for different scales

of πi,t−1 and IUi,t−1, w
(•)
i,t−1 enters (1) in standardized form, i.e. w

(•)
i,t−1 = w̃

(•)
i,t−1/σ

(•)(w̃), with

σ(•)(w̃) =
√
(1/(N − 1))

∑
i(w

(•)
i,t−1 − w̄

(•)
t−1)

2, • ∈ {1, 2}.

2.1 Estimation

We test for functional dependence of the price-adjustment parameter on πi,t−1 and IUi,t−1 in the

framework of FC estimation (Cai et al. 2000). Thereby we also capture cross-sectional specialities

in the functional relation θ(ω)1, e.g. due to distinct economies’ institutional characteristics. To

account for potential endogeneity of sit, we apply GMM (Galí and Gertler 1999) to estimate (1),

such that

θ̂(ω) = argmin
θ

Q(θ,Kh(ω)), (2)

with Q(·) denoting the GMM objective function

Q(θ,Kh(ω)) = m̄(·)′Φm̄(·). (3)

In (3), Kh(ω) = K(ω/h)/h represents the logistic kernel function, which is a function of the

“bandwidth” h > 0. Following “Scott’s rule”, we set h = 1.06(NT )−1/6. Moreover, Φ represents

a positive definite matrix and m̄(·) the vector of empirical moments

m̄(θ,Kh(ω)) = (1/NT )
N∑

i=1

T∑

t=1

zi,t−1εitKh(w
(1)
i,t−1 − w(1))Kh(w

(2)
i,t−1 − w(2)), (4)

1We abbreviate ωi,t−1 = ω in the following.



which is evaluated over the range of w
(1)
i,t−1 and w

(2)
i,t−1. In (4), zi,t−1 denotes a vector of instrument

variables.

2.2 Inference

We test H0 : θ(ω) = θ, i.e. a constant Calvo parameter. Rejecting H0 in favor of a FC θ(ω) implies

state-dependence. In applications of FC models, inference is often based on resampling residuals

(Cai et al. 2000). However, inflation series, and consequently also the disturbances from (1), of-

ten feature conditional heteroscedasticity (Engle 1982). Since inference based on heteroscedastic

disturbances might lead to spurious conclusions, we employ a “factor-based bootstrap” (FB) (Her-

wartz and Xu 2009). Instead of resampling ε̂it, FB relies on resampling factors ω = (w(1), w(2)).
The procedure is implemented as follows:

i) Based on (1), estimate θ̂(ω) and, say, 1000 bootstrap counterparts θ̂(ω∗) by sampling 2-tuples

ω∗ = (w(1∗), w(2∗)), with replacement, from (w
(1)
i,t−1, w

(2)
i,t−1).

ii) Reject H0 if, for any ω, θ̂(ω) is outside the (1 − c) × 100%-quantile range of the bootstrap

estimates from a.), given some confidence level c.

Random sampling distorts any potential relation between θ and ω. Hence, θ̂(ω∗) satisfy H0 by

construction. If H0 holds, θ̂(ω) and θ̂(ω∗) are close to each other, whereas values θ̂(ω) outside the

interval suggest that H0 should be rejected.

2.3 Data

We employ quarterly, seasonally adjusted series of real GDP, Yit, the implicit output defla-

tor, IPDit, and unit labor costs, ULCit, for economies i, i = 1, ..., N : Australia, Belgium,

Canada, Finland, France, Italy, Japan, Netherlands, New Zealand, Portugal, Spain, Sweden, UK,

and US, (N = 14), drawn from the OECD database. We denote yit = ln(Yit), inflation as

πit = 400 × (pit − pi,t−1) with pit = ln(IPDit), for t = 1, ..., T representing quarters 1961Q3 to

2011Q4, (T = 201). Unobservable marginal costs are approximated by the labor share such that

sit = s∗it − s̄i, where s∗it = ulcit − pit, and ulcit = ln(ULCit). The steady-state measure s̄i is

computed as s̄i = (1/T )
∑T

t=1 s
∗
it. As instrument variables in (4), we use zi,t−1 = (ỹi,t−1, ỹi,t−2)

′,

where ỹi,t−1 denotes the output gap (cf. Galí and Gertler 1999) that is obtained by using a one-sided

HP filter, i.e. as ỹi,t = yit− ȳit, where trend output, ȳit, is computed recursively, using information

up to and including time instance t at each step.2

2This one-sided filtering approach follows Dufour et al. (2006). The authors argue that lagged values of full-sample

filtered output gaps are, by construction, related to future information and therefore not an appropriate instrument

variable. One-sided filtering methods are not subject to such timing violations.



Country ARCH(1) ARCH(4) Country ARCH(1) ARCH(4)

AUS 41.70 52.07 JPN 18.89 26.01

BEL 9.24 24.41 NLD 32.37 111.74

CAN 28.61 33.40 NZL 41.31 53.47

ESP 34.94 42.81 PRT 38.44 52.26

FIN 74.89 102.17 SWE 76.26 81.09

FRA 42.67 51.31 UK 77.99 79.46

ITA 26.25 42.10 US 43.99 51.42

χ2
0.95- crit. val.: 3.84 9.49 3.84 9.49

Table 1: ARCH-LM diagnostics ARCH(·) = TR2 from ε̂2it = γ1ε̂
2
i,t−1 + βπi,t+1 + κsit + vit and

ε̂2it = γ1ε̂
2
i,t−1 + γ2ε̂

2
i,t−2 + γ3ε̂

2
i,t−3 + γ4ε̂

2
i,t−4 + βπi,t+1 + κsit + vit for i = 1, ..., N .

3. Results

First, diagnostic statistics highlight the merits of the selected model. Second, we report and

discuss results.

3.1 Model diagnostics

The appeal of using the FB approach is demonstrated by the residual diagnostics from (1) as

reported in Table 1. Apart from cross-sectional heterogeneity, the variance of NKPC residuals

εit is likely to exhibit time-conditional heteroscedasticity. This is confirmed by economy-specific

ARCH-LM statistics in Table 1. As Fernández-Villaverde and Rubio-Ramírez (2008) point out,

such effects might lead to spurious conclusions regarding state-dependence of θ.

In addition, a J-test for overidentifying restrictions obtains a value close to zero, indicating

weak exogeneity of zi,t−1.

A further diagnostic test is to assess the relevance of the selected instrument variables. As

discussed by Stock et al. (2002) or Mavroeidis et al. (2014), the GMM estimation approach we

apply in the setting of the NKPC might suffer from weak identification. This problem arises if

instrument- and explanatory variables are not strongly related. To examine this issue, we employ

an F -test for joint significance of the instrument variables in a regression of sit on zi,t−1. The test

indicates significant explanatory content of the instrument variables, taking a value of F = 12.019,

which exceeds the “rule-of-thumb-” threshold of F = 10 discussed by Stock et al. (2002). Thus,

we conclude that our empirical approach might not be overly vulnerable to the problem of weak

identification.

3.2 State-dependence of the NKPC

In the following, we discuss the potential dependence of the NKPC on ω. Figure 1 depicts esti-

mates of θ(ω) (solid lines) as a function of either w(1) or w(2) for fixed values of the respective other

variable, for example, θ̂(w(1)|w(2) = q
(2)
⋆ ), where q

(2)
⋆ denotes quantiles with ⋆ ∈ {20%, 50%, 80%}

of the empirical distribution of w
(2)
i,t−1. Dashed lines represent 90%-FB-bootstrap confidence inter-

vals. State-invariance (H0) is rejected for any ω where θ̂(ω) lies outside the interval. For low to
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Figure 1: 2D-plots of functional-coefficient estimates.

Estimates θ(w(•)|w(◦) = q
(◦)
⋆ ) conditional on ◦, • ∈ {π, IU} for ⋆ ∈ {20%, 50%, 80%}.
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Figure 2: 3D-plots of functional-coefficient estimates.

Estimates for θ(ω) are depicted in the left plot, t-stats on the right hand side.

moderate levels of inflation and IU ∈ {q20, q50}, estimates θ̂(ω) in Figure 1 confirm the theoretical

prediction ∂θ(ω)/∂π < 0. Changes in θ̂(π|IU) for IU = q80 and π > 5% are relatively small.

Significant changes in θ̂(IU |π) are also limited to particular regions of the range of IU . This is

also in line with microdata evidence from Klenow and Kryvtsov (2008). In contrast, we do not

find evidence for a uniform sign of the IU impact, in line with Bénabou (1992), who argues that

both signs are plausible.

Next, the joint influence of π and IU on θ̂(ω) is depicted in the 3D-plot in the left part of Figure

2. While θ̂(ω) is highest for low π, it decreases at intermediate levels for π ≈ 3%. The plot also

shows that variation in θ̂(ω) due to IU is confined to cases where π < 4%. However, this range of

π is currently most frequently observed in the considered economies. The size of θ̂(ω) is close to

estimates reported in Fernández-Villaverde and Rubio-Ramírez (2008).

Finally, the recurring finding of implausible Phillips-curve estimates might be due to the as-

sumption of θ as constant (Wolman 1999). We examine this claim by specifying the reduced-form
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Figure 3: 3D-plots of θ̂(ω) with alternative inflation uncertainty measure IUi,t = (∆πt)
2.

Estimates for θ(ω) are depicted in the left plot, t-stats on the right hand side.

parameter κ = ((1− θ)(1− θβ))/θ as κ = κ(ω). State-dependent t-statistics regarding κ(ω), de-

noted t(ω), are shown in the right plot in Figure 2. Allowing for state-dependence of κ(ω) obtains

highly significant t(ω)-statistics over almost the entire range of ω. On the other hand, the state-

invariant t-statistic is insignificant and equals tH0
= 1.04. Coefficient estimates κ̂(ω) vary between

≈0.02 and ≈0.23 for cases where t(ω) is significant. This suggests that conventional marginal cost

measures are in line with theoretically plausible estimates once state-dependence, i.e. κ = κ(ω),
is allowed for.

3.3 Robustness

In this Section, we assess the robustness of the findings with respect to respecifications of the

model and of the estimation procedure.3 First, results may depend on the way how the unobserv-

able IU is quantified. There exists no consensus on the most suitable way to measure IU (Batchelor

and Dua 1996). In the first step, we compare outcomes for |∆πi,t−1| as a measure of IU by those

for an alternative quantification. The left graph in Figure 3 shows a 3D-surface plot of θ̂(ω) for

the case when IUi,t−1 = (∆πi,t−1)
2 is employed as a measure of inflation uncertainty. The figure

shows that the conclusions from Section 3.2 regarding state-dependence of θ̂(ω) remain essen-

tially unchanged. The most pronounced changes in θ̂(ω) are found with respect to the inflation

rate, which leads to a steady decrease in θ̂(ω) over almost the entire support of π. In contrast, the

influence of IU appears to be limited also in case of the alternative IU measure. Moreover, the

right graph in Figure 3 depicts state-variant t-statistics. The figure highlights that the influence of

the marginal cost measure on inflation is clearly significant for most values of the state variables

also if IU is quantified by (∆πi,t−1)
2.

A second reexamination of the empirical approach is concerned with the choice of instru-

ment variables. Since the estimate of ỹt may depend to some extent on the choice of the fil-

tering method, it is tempting to compare the results from Section 3.2 to the ones obtained if

unfiltered, i.e. directly observable data are employed as additional instrument variables. Fig-

ure 4 shows results corresponding to those in Figure 1 if zt = (ỹi,t−1, ỹi,t−2)
′ is replaced by

3We are grateful to an anonymous referee for suggesting these robustness check.
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Figure 4: 2D-plots of functional-coefficient estimates
¯̂
θ(ω), on average across distinct choices of

instrument variables. For further descriptions, see Figure 1.

z∗t = (ỹi,t−1, ..., ỹi,t−4, πi,t−1, ..., πi,t−4)
′. To show that the findings are robust with respect to subset

choices of this larger instrument variable set, the Figure shows the mean
¯̂
θ(ω) = (1/J)

∑J
j=1 θ̂(ω)j ,

over j = 1, ..., J subset combinations of the 8 instrument variables, where J =
∑8

k=1 8!/(8 −
k)!k! = 255. Similarly, we obtain averages across the confidence bands that are computed for each

single estimate of θ̂(ω) given a particular combination of instrument variables.

4. Summary

We document significant state-dependence of the price adjustment frequency in the New Key-

nesian Phillips curve framework. Moreover, state-dependent estimates are more in line with the-

ory than the ones obtained assuming a constant frequency of price adjustment. Several alternative

specification choices regarding the estimation strategy underline the robustness of the empirical

findings. We conclude that treating the Calvo (1983) price-updating frequency as a structural pa-

rameter may be overly restrictive.
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