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Abstract
The weaknesses of current Value-at-Risk (VaR) measure led the Basel Committee to revise the Basel II market risk

framework. A stressed VaR measure is introduced to incorporate the violent behaviour of financial markets during

crisis periods. This requirement allows the pro-cyclicality of the current VaR to be removed. However, this solution

does not solve the problem related to the VaR estimation, including the choice of an appropriate model in a parametric

approach. The forecasts of those models must comply with the assumptions of unconditional coverage and

independence. In this paper, we evaluate the contribution of a noisy chaotic model for estimating the VaR measure in

a crisis period. The simultaneous consideration of heteroskedastic and chaotic structures leads to a better forecast of

the returns (Kyrtsou and Terraza (2010)). This clarification relative to the GARCH (1,1) model is used in this paper

for predicting the stressed VaR of a portfolio built according to the mean-Gini criterion. The forecasting exercise,

evaluated by backtesting tests, shows an outperformance of the Mackey-Glass-GARCH (1,1) model.
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1 Introduction
The underestimation of market risk is considered as one of the triggers of the 2007-2008
financial crisis. According to the Basel Committee’s recommendations, the minimum
capital requirement can be determined by standard methods (1993) or by using an internal
model (1995) based on Value-at-Risk(VaR). The prudential standards, revised in the Basel
II framework, led to the introduction of a stressed VaR. This allows banks to discard the
pro-cyclicality in the determination of capital. The minimal amount of capital is given
by a linear combination of these two VaR:

c = max{V aRt−1;mc ∗ V aRAV G}+max{SV aRt−1;ms ∗ SV aRAV G} (1)

Where c is the minimum amount of required capital, V aRt−1 and V aRAV G are, re-
spectively, the current VaR in t− 1 and the mean of the V aRt−1 over a period of 60 days;
SV aRt−1 is the stressed VaR in t − 1 and SV aRAV G is the mean of the stressed VaR
in t − 1 over a period of 60 days. mc et ms are multiplicative factors between 3 and 4
determined by the supervisory authorities. In spite of this revision, the use of a stressed
VaR does not solve the difficulties encountered in the underestimation of market risk.
The classical modelling of the VaR measure assumes the nullity of the mean of returns.
However, chaotic structures in financial time series have been detected, e.g. Kyrtsou
and Terraza (2003), Guégan and Mercier (2005), Guégan and Hoummiya (2005), Guégan
(2009) among others. For instance, Kyrtsou and Terraza (2003) showed an improvement
of forecasts when the heteroskedastic structures in the variance equation and chaotic
structures in the mean equation are considered simultaneously.
Building on those approaches , the goal of this paper is to evaluate the ability of the
Mackey-Glass-GARCH(1,1) model to forecast a stressed VaR. This VaR is computed for
a portfolio containing only banking assets whose weights are determined by the mean-
Gini criterion. To measure the contribution of the inclusion of chaotics structures, we
compare results of the Mackey-Glass-GARCH (1,1) and GARCH (1,1) models. We apply
two backtesting tests to confirm the outperformance of the noisy chaotic model.
Our paper is organized as follows: Section 2 introduces the stressed VaR and the Mackey-
Glass-GARCH model. Section 3 presents our main results on a banking portfolio and
some economic implications. Section 4 provides some concluding remarks.

2 Methodology for estimating stressed Value-at-Risk
The introduction of VaR as a measure of market risk was initiated by regulators such
as the Basel Committee and the European Commission. The development of methods
for estimating VaR has failed to solve the problems caused by this measure. The use of
a stressed VaR is relevant if modelling takes into account chaotic structures of financial
time series.

2.1 Stressed VaR: a response to the pro-cyclicality of classical Value-at-Risk

Einhorn(2008) implies ’the VaR is like an airbag that works all the time except when you
have an accident’. This statement summarizes the uncertainties about the VaR measure.
Brown and Tolikas(2006) and Danielsson(2009) mentioned its inaccuracies in estimating
losses. Artzner and al.(1999) argue that it is not a coherent measure since it violates
the subadditivity property. Damodaran(2007) pointed out the difficulty for the VaR
measure to take into account non-market risks and its inaccuracies for long time periods.



Alternative measures are proposed but these are better than the VaR measure only in
specific cases. Despite limitations of the VaR measure, it remains the principal instrument
used by banks and regulatory authorities to estimate extreme risks.
VaR estimations are closely linked with economic cycles. Market euphoria following a
favorable evolution in the real economy, frequently led to an underestimation of risks. This
leads to an abusive granting of credit and an excessive consumption of households (BIS
(2001)). The identification of self-fulfilling prophecies (Merton (1948)) in the behavior of
financial institutions shows an underestimation of risk in periods of crisis [see Figure 1].
Market risks’ assessment by the VaR tends to minimize the amount of potential losses
during euphoria periods because of an increase of prices and a decrease of the volatility.
Meanwhile, Basel 2 imposes the use of an historical of 250 days for VaR estimation, which
leads to a bias due to the internal ratings of banks (BIS (2001)). The pro-cyclicality
inherent in the risk measures based on self-fulfilling expectations of the agents does not
allow a clear identification of the signs of an increased risk. The VaR measure is pro-
cyclical since it is closely linked to the volatility. During periods of instability, the amount
of the classical VaR can be multiplied by 2.6 compared with an estimated VaR in a period
of euphoria: the movements in the financial markets are amplified (BCBS(2009)).
For all these reasons, the Basel Committee introduced the stressed VaR. Determined from
a period of stress, it aims at reducing the pro-cyclicality of capital and thus leads to an
increase of 110% of capital.
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Figure 1: Pro-cyclicality in risk measures.

Factors of pro-cyclicality in risk measures according to the 71st report of BIS (2001)



2.2 How to estimate the stressed VaR?

Despite the introduction of the stressed VaR, its modelling is not well-established. Stochas-
tic models, including GARCH-type models, are extensively used despite poor results. To
overcome the shortcomings of stochastic models, we propose using a chaotic-stochastic
approach. Many studies have shown the presence of chaotic structures in financial time
series. This might be useful, in a market risk framework, to model financial time series
using chaotic-stochastic models. For this, we choose the Mackey-Glass-GARCH model.
Introduced by Mackey and Glass (1977), this takes into account the chaotic structures. A
combination of this model with a GARCH type process was proposed by Kyrtsou and Ter-
raza (2003,2004,2010). The Mackey-Glass-GARCH model takes into account the chaotic
structures in the mean equation and the strong volatility of financial time series. The
model is specified as follows:

Xt = a
Xt−1

1 +X2
t−1

− δXt−1 + ǫt (2)

with ǫt|It−1 ∼ N(0, ht) ǫt = zt
√
ht and ht = α0 + α1ǫt−1

2 + β1ht−1.
Where Xt is the returns series, a and δ are parameters to be estimated. It−1 is the
information set available at time t and ht is the variance of the residuals.

3 Empiricals findings
In order to take into account both heteroskedastic and chaotic structures in the estimation
of a stressed VaR, we propose to build a portfolio composed only of banking assets coming
from CAC 40 index over a period of crisis ranging from 01/07/2007 to 11/04/2011, that
is 1260 observations. We propose to select three banking assets: Crédit Agricole, Société
Générale and BNP Paribas1. From these assets, we can build a portfolio according to the
mean-Gini criterion.

3.1 Descriptive analysis and preliminary tests

The mean-Gini approach is an alternative method to the mean-variance approach of
Markowitz(1952). It overcomes the assumptions of normal distribution of the returns
and quadratic utility functions of investors. Moreover, Yitzhaki (1982) has shown that
Gini coefficient satisfies the criterion of second-degree stochastic dominance. This makes
the measure compatible with the theory of expected utility maximization. Shalit and
Yitzhaki(1984) assume that the cumulative distribution for each observation of rank t
is t/T . More precisely, Dorfman(1979) and Shalit and Yitzhaki(1984) define the Gini
measure as follows:

Γ = 2cov(Rp, Fp(Rp)) (3)

where Rp is the returns series of the portfolio whose cumulative probability density is
defined by Fp(Rp). One of the advantages of this criterion compared to the mean-variance
criterion is the effect of the variability of an asset on the variability of the portfolio. The

1The Financial Stability Board recommends to 29 credit institutions to strengthen their capital due to
the risk that these institutions are likely to weigh on the international financial system in case of default
(too big to fail). BNP Paribas, Société Générale and Crédit Agricole are part of these institutions.



Gini coefficient of the portfolio is defined by:

Γp = 2cov(Rp, Fp(Rp)) (4)

Rp =
N∑

i=1

xiRi (5)

N∑

i=1

xi = 1 (6)

Where Ri is the return to asset i, N is the number of assets and xi is the weight of asset
i in the portfolio. The Gini coefficient is defined by:

Γp = 2
N∑

i=1

xicov(Ri, Fp(Rp)) (7)

From the equation 7, the portfolio’s risk can be decomposed as a weighted sum of the
covariances between the variables Ri and the cumulative distribution of the portfolio. In
the mean-variance analysis, the risk of the portfolio is represented by the variance of the
portfolio, defined by:

V (Rp) =
N∑

i=1

xicov(Ri, Rp) (8)

We note that in the case of the mean-Gini criterion, the portfolio is represented by the
cumulative distribution of its returns Fp. In the mean-variance criterion, it is represented
by its returns Rp. The mean-Gini analysis solves the following optimization problem:

min Γp (9)

Under the following constraints:

µp = µ (10)
N∑

i=1

xi = 1 (11)

xi ≥ 0,∀i = 1, 2, , N (12)

With µ the expected average returns. The solution of this optimization program deter-
mines the relative weights to each asset. Table 1 gives the weight for each asset.

Weightings according to the mean-Gini criterion
Asset Weight

Crédit Agricole 0.406
BNP Paribas 0.515

Société Générale 0.08

Table 1: Weightings according to the mean-Gini criterion

The obtained weights reflect the climate in the marketplace and investors’ interest



in each asset2. The asset Société Générale, which has the lowest weight in the banking
portfolio, is also the one that suffers the largest losses. It is subject to a high volatility
following the Greek debt episode. In contrast, BNP Paribas is the asset which represents
more than 50 % of the weight of the portfolio. It owes its attractiveness to its position of
leader among banking institutions. This makes it the least risky during the crisis. The
evolution of the portfolio returns series is similar to that of selected assets. The use of a
diversification, however, leads to a sharp decrease of the skewness and kurtosis and there-
fore of the Jarque-Bera statistic. The portfolio construction based on detrended price
series provides an integrated time series of order 0. This is confirmed by unit root tests3.

Descriptive statistics of portfolio returns series

Mean -0.001124
Standard deviation 0.023931

Skewness 0.020109
Kurtosis 6.687953

Jarque-Bera 713.5707

Unit root tests of portfolio returns series

Test Estimation Critical Value
ADF -24.174 -3.41
KPSS 0.096416 0.146
ERS 0.119552 5.62

Table 2: Descriptives statistics and unit root tests

GPH test
Observations d t-statistic P-value

T0.4 = 17 0.0448 0.2221 0.8270
T0.5 = 35 0.03610 1.7110 0.3645
T0.6 = 72 -0.0367 -0.4387 0.6622
T0.7 = 147 -0.0528 -0.9344 0.3516
T0.8 = 302 -0.0226 -0.5778 0.5638

Table 3: GPH test

The generating process of the portfolio structure is non-identically and independently
distributed, i.e. the null hypothesis of BDS test is rejected4 [Figure 2]. Also, the appli-
cation of Geweke and Porter-Hudak (GPH) test indicates that there are no long memory
structures [Table 3].

To detect the presence of chaotic structures, we apply the algorithms of Wolf et al.
(1985) and of Rosenstein et al. (1992). They can estimate the largest Lyapunov exponent

2The weights determined by the mean-variance criterion for the assets Crédit Agricole, BNP Paribas
and Sociéte Générale are respectively equal to 0.46, 0.5, 0.03. They are substantially different from those
obtained by the mean-Gini criterion, especially for the asset Société Générale.

3ADF: Augmented Dickey-Fuller(1981) test, KPSS: Kwiatkowski-Phillips-Schmidt-Shin(1992) test,
ERS: Elliot-Rothenberg-Stock(1996) test

4BDS test is used to test the null hypothesis of an identically and independently distributed distribu-
tion against an unspecified alternative hypothesis
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Figure 2: BDS test on returns series

Estimation of the largest Lyapunov exponent
Parameters m τ

2 2
Algorithm of Wolf and al.

LLE 0.3803
Algorithm of Rosenstein and al.

LLE 1.5866

Table 4: Estimation of the largest Lyapunov exponent

whose sign determines the nature of the generating process. Table 4 shows that the largest
Lyapunov exponent of returns is positive, confirming the presence of chaotic structures
in the returns series. The consideration of these structures should lead to a substantial
improvement of forecasts.

3.2 Modelling of returns in a stressed period: comparing stochastic and

chaotic-stochastic approaches

The analyses, carried out previously, revealed the presence of heteroskedastic and chaotic
structures. To judge the relevance and usefulness of taking into account chaotic structures
in the modelling of returns, we compare the Mackey-Glass-GARCH (1,1) model with the
GARCH (1,1) model in terms of the quality of the residuals5. According to the results of
the estimation [Table 5], the GARCH model seems appropriate for modelling the returns

5The choice of a c+GARCH(1, 1) model without ARMA process is due to the statistically insignifi-
cance of parameters of ARMA process.



of the portfolio. Apart from the constant, all parameters are significant.

GARCH(1,1) model
Parameters coefficients Probability

c -0.0003 0.4909
α0 0.000012 <0.0001
α1 0.200086 <0.0001
β1 0.791429 <0.0001

Table 5: Estimation of the c+GARCH(1,1) model

Mackey-Glass-GARCH(1,1)model
Parameters coefficients Probability

a -14.2987 0.0169
τ -14.6566 0.0145
α0 7.469e-06 0.0004
α1 0.157963 <0.0001
β1 0.837255 <0.0001

Table 6: Estimation of the Mackey-Glass-GARCH(1,1) model

The significance of parameters of the Mackey-Glass-GARCH (1,1) model confirms
its adequacy as model of the returns of the banking portfolio. The presence of chaotic
structures is verified by the significance of parameters a and τ.

Given the relevance of the two models, we compare the residuals series. We retain, in
this analysis, the standardized residual series. Tests of normality in the table 7 indicate a
slight out-performance of the GARCH (1,1) model. It provides residuals less leptokurtic
than the Mackey-Glass-GARCH(1,1) model. Table 8 shows that autocorrelation tests
on residuals series reject the null hypothesis of non-autocorrelation. The two models
are unable to take into account the phenomenon of volatility clustering in the series of
portfolio returns.

Normality tests on standardized residuals
Model Kurtosis Skewness JB stat

GARCH(1,1) 3.7353 0.0527 28.9425
Mackey-Glass-GARCH(1,1) 3.8204 0.0472 35.749

Table 7: Normality tests on standardized residuals

Finally, the ARCH tests analyse the ability of different models to capture the phe-
nomenon of intermittency [Table 9]. It appears that the GARCH (1,1) model is unable
to take into account the high variability of the returns. This is unlike the Mackey-Glass-
GARCH(1,1) model. Nonetheless, the choice of one of these models for estimating VaR
requires the use of backtesting tests.



Lags
Model 2 5 10 15
GARCH(1,1)0 0 0 0
Mackey-
Glass-
GARCH(1,1)

0 0 0,0002 0,0003

Table 8: P-values of autocorrelation tests on residuals series

Lags
Model 2 5 10 15
GARCH(1,1)0.0015 0.0032 0.0268 0.0492
Mackey-
Glass-
GARCH(1,1)

0.1222 0.3949 0.3929 0.3815

Table 9: P-values of ARCH test on residuals series

3.3 Backtesting tests

We propose a forecasting exercise for evaluating the performance of the Mackey-Glass-
GARCH (1,1) and GARCH (1,1) models. We retain long and short positions. We use the
backtesting approach Kupiec(1995) and of Christoffersen (1998) that are most commonly
used to evaluate the conditional and unconditional coverage provided by models. Accord-
ing to Christoffersen(1998), a VaR is valid if it satisfies 2 assumptions. The assumption
of unconditional coverage is verified if the probability of an ex-post realization of a loss
in excess relative to the ex-ante anticipated Value-at-Risk is equal to the coverage rate.
Thus, the Value-at-Risk’s forecasts for a coverage rate of α% should not lead to over α%
of violations. Let:

It =





1 if rt < V aRt

0 otherwise
(13)

with It an indicator function for comparing the observed returns and the estimated
Value-at-Risk, while rt corresponds to the observed returns at time t and V aRt the Value-
at-risk forecasted in t from the set of information available at time t− 1. Kupiec(1995)’s
test is built on the assumption H0 as follows: E(It) = α where It is an indicator function
of violations and α the coverage rate. Kupiec’s statistic is given by:

LRuc = −2ln[(1− α)N−XαX ] + 2ln[(1− (X/N))N−X(X/N)X ] ≡ χ2(1) (14)

Where N is the number of violations and X the number of forecasts with N < X.
The rate N

X
is the failure rate. If the calculated statistic LRuc is less than the Chi

square critical value for one degree of freedom, then the assumption H0 is accepted. The
assumption of independence considers the temporal realization of violations. It assumes
that there are no clusters of violations. Violations of the Value-at-Risk at 2 different
dates for the same coverage must be independently distributed. Christoffersen (1998)
emphasizes the invalidity of a VaR’s forecasts if they do not satisfy the assumptions



of unconditional coverage and independence. These two assumptions may be combined
under the assumption of conditional coverage. This is satisfied when the conditional
probability given all information available at t − 1 of an exception in t is equal to the
coverage rate α.
Christoffersen(1998)’s statistics are:

LRcc = −2{lnL[Πα, I1(α), ..., IT (α)]− lnL[Π̂, I1(α), ..., IT (α)]} ≡ χ2(2) (15)

LRind = −2{lnL[Π̂π, I1(α), ..., IT (α)]− lnL[Π̂, I1(α), ..., IT (α)]} ≡ χ2(1) (16)

where π̂ is the maximum likelihood estimator of the transition matrix under the alternative
hypothesis and L(.), the log-likelihood of violations It(α). Π̂π and Πα designate respec-
tively the maximum likelihood estimator of the transition matrix under the assumption
of independence and the maximum likelihood estimator of the transition matrix under
the assumption of conditional coverage. In addition, we have the following result:

LRcc = LRuc + LRind (17)

3.3.1 Within sample results

From table 10, we compare statistics LRuc and LRind to a chi-square with one degree
of freedom. It shows that the Mackey-Glass-GARCH (1,1) model provides acceptable
predictions for the 0.95 quantile, unlike the GARCH (1,1). For 0.99 quantile, the two
models provide acceptable predictions.

For the long position, the Mackey-Glass-GARCH (1,1) model seems sufficiently power-
ful to provide acceptable within sample predictions during a crisis period. The calculated
statistics [LRuc, LRind] and LRcc are respectively lower than the value of a chi-square at
one and two degrees of freedom. The GARCH (1,1) model also validates the backtesting
tests for the two positions, but the statistics calculated for this model are greater than
those determined by the Mackey-Glass-GARCH (1,1) model. The Mackey-Glass-GARCH
(1,1) model performs best in terms of the within sample predictions.

3.3.2 Out of sample predictions

Testing results for the out-of-sample forecasts [table 11] confirm the findings previously
established. The Mackey-Glass-GARCH(1,1) model provides adequate conditional and
unconditional coverage in short and long positions for the 0.95 and 0.05 quantile respec-
tively. The statistics of the different tests clearly show the inadequacy of the GARCH
(1,1) model to take into account the highly erratic market movements.

4 Conclusion and Perspectives
Proposals by the Basel Committee on Banking supervision to impose an estimation of a
stressed VaR do not solve the matter of accuracy in modelling. The simultaneous integra-
tion of heteroskedastic and chaotic structures has already been the subject of a literature
that has shown that their associations leads to an improvement of the forecasts. In this
paper, we evaluate the relevance of this association in a context of severe crisis. We use
the estimation of a stressed VaR on a portfolio composed only of banking assets over a
highly disturbed period. We show that the backtesting tests confirm the outperformance



Backtesting tests
Short position

Quantile LRuc LRind LRcc

MG GARCH(1,1) model
0.95 0.637538 0.133283 0.786901
0.99 0.708546 .NaN .NaN

GARCH(1,1) model
0.95 3.0889 4.545 6.876
0.99 0.289 2.42 2.44

Long position

Quantile LRuc LRind LRcc

Mackey-Glass-GARCH(1,1) model
0.05 0.0173 0.2126 0.2299
0.01 0.1597 0.6508 0.8105

GARCH(1,1) model
0.05 0.9813 0.0968 1.0781
0.01 0.78146 0.1636 0.945

Table 10: Backtesting tests for in-the-sample predictions

of the Mackey-Glass-GARCH (1,1) model compared to the GARCH (1,1) model. The
results we obtained open the way for further reflections on the robustness of the Mackey-
Glass-GARCH(1,1) model: is it suitable only for crisis periods or not?

Backtesting tests
Short position

Quantile LRuc LRind LRcc

MG GARCH(1,1) model
0.95 1.3755 0.1715 1.5469
0.99 2.191 .NaN .NaN

GARCH(1,1)model
0.95 14.2204 7.4614 21.1569
0.99 27.965 .NaN .NaN

Long position

Quantile LRuc LRind LRcc

Mackey-Glass-GARCH(1,1) model
0.05 0.385656 0.494822 0.881211
0.01 0.1044 0.0324 0.1368

GARCH(1,1) model
0.05 6.620363 0.852175 7.4921
0.01 0.1044 0.0487 0.1531

Table 11: Backtesting tests for out-the-sample predictions
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