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Abstract

We consider the problem of finding a "fair" or "acceptable” spanning tree in an undirected graph when each member
of a group of agents proposes a spanning tree. An "acceptable” spanning tree in that respect is a spanning tree which
does not differ in more than a given number of edges from each of the single proposals. We show that, from a
computational perspective, determining if such a spanning tree exists is a difficult (NP-complete) problem.
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1. Introduction

Spanning trees of undirected graphs play a major role in the construction of networks of
various kind. Apart from the underlying optimization exercise itself, in the last decades
spanning trees have received a lot of attention in connection with fairness issues. In that
context, the overwhelming focus was laid on dividing the cost of a spanning tree of minimum
total cost between a set of agents in a fair manner (among many others, see, e.g., the works
of Bird (1976), Kar (2002), Dutta and Kar (2004), Bergantinos and Vidal-Puga (2007), and
Bogomolnaia and Moulin (2010)).

The task of constructing a “fair” spanning tree itself, i.e., a tree which is acceptable to the
whole group of agents, has received comparatively little attention, some representatives be-
ing the works of Darmann et al. (2009), Darmann (2013), and Escoffier et al. (2013). Similar
to their works, we also consider the problem of finding a “fair” spanning tree from a compu-
tational perspective. However, in our context, we consider the situation in which each agent
proposes a specific solution, i.e., spanning tree. The goal is to determine a spanning tree
which is fair or acceptable in the sense of not differing "too much" from each of the solutions
proposed by the agents.

In principle, we are thus concerned with the computational complexity involved in the aggre-
gation of a number of spanning trees proposed by the agents into a single spanning tree.! In
a different, preference-based environment, Endriss and Grandi (2012) consider the problem
of aggregating directed graphs (proposed by agents) into a single graph; instead of focus-
ing on computational complexity however, Endriss and Grandi (2012) choose an axiomatic
viewpoint.

The problem we consider arises in situations in which a network in the form of a spanning
tree needs to be constructed (e.g., sewage systems, telecommunication or power networks and
pipelines of any kind), and the respective decision makers have, possibly differing, opinions
on how the actual network should look like. As an example, consider the situation in which
an oil pipeline system should be built, connecting all the countries involved. Each of the
countries, however, (for political, economic or environmental reasons) proposes a different
specific solution of how the system should connect the countries. The task now is to find a
solution, i.e., a spanning tree, which all of the countries “accept”.

In our framework, we use the following intuitive measure of acceptance: an agent accepts a
spanning tree 7', if the number of edges that are in 7" but not in the spanning tree proposed
by the agent, does not exceed a given upper bound. In this work, we show that it is
computationally intractable to find a tree that is acceptable to all agents. This result adds
to the results of Darmann et al. (2009), where the computational complexity of finding such
a fair spanning tree is analyzed when agents approve or disapprove of single edges (instead
of proposing a whole spanning tree).

!This falls into the scope of Computational Social Choice (for overviews of that area see Endriss (2011)
and Lang (2005)).
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2. Formal framework and problem definition

We start with the formal framework of this paper. An undirected graph G = (V, E) consists
of a finite set V and a set E of two-element subsets of V. We call the elements of V' vertices
and the elements of E edges. A cycle is a sequence of vertices vy, vy, ..., v, with n > 3 such
that (i) vo = vy, (ii) v; # v; for (4,4) # (0,n), and (iii) {vi—1,v;} € Efor 1 <i <n. A
subset ' C E with |T'| = |V| — 1 is called a spanning tree of G, if (V,T') contains no cycle.

Now, given a graph G = (V, E) and a set A of agents, each a € A proposes a spanning
tree T, of G. The goal is to find a spanning tree 7" that minimizes the “distance” to the
agents’ proposals. Using the symmetric set difference as basis, there are two natural ways of
approaching this problem. The first one aims at finding a spanning tree 7" which minimizes
the total distance, i.e., minimizes > _, [T\ T,|. The second one uses a more egalitarian
approach and looks for a spanning tree 7" that minimizes the maximum distance, i.e., mini-
mizes maxgea |7\ Ty

These two different approaches raise the question of the computational complexity involved
in each of the problems. It is not hard to see that the first approach reduces to the classical
maximum spanning tree problem and is hence easy to solve. In contrast, we will show that
the second approach leads to a problem which is computationally difficult. Before going into
details, that problem is formally defined as follows.

Definition 2.1 (ACCEPTABLE-TREE)

GIVEN: Set A of agents, undirected graph G, spanning trees T, of G for a € A,
k e N.
QUESTION: Is there a spanning tree T of G such that |T \ T,| < k for all a € A?

3. ACCEPTABLE-TREE is NP-complete

In this section, we show that ACCEPTABLE-TREE is an NP-complete problem. We will
prove this by providing a reduction from HALF 2-SAT, a special case of the MINIMUM 2-
SATISFIABILITY PROBLEM (MIN 2-SAT).

Definition 3.1 (HALF 2-SAT)

GIVEN: Set X of variables with |X| = 2n for some n € N, set C of (disjunctive)
clauses over X such that every clause is made up of exactly two variables.

QUESTION: s there a truth assignment T for X that satisfies all clauses of C, such that
X| g

the number of variables set to true under 7 is exactly ‘T

Note that in HALF 2-SAT, the clauses consist of variables and not of literals, i.e., there are
no negated literals in HALF 2-SAT. First, we show that HALF 2-SAT itself is NP-complete.

Theorem 3.1 HALF 2-SAT is NP-complete.
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Proof. Clearly, HALF 2-SAT is in NP. To show NP-hardness, we provide a reduction from
MIN 2-SAT. Given a set X' of variables, a set C” of (disjunctive) clauses made up of exactly
two variables of X', and k € N, MIN 2-SAT is the task to decide if there exists a truth
assignment 7’ setting to true at most k variables of X’ that satisfies all clauses of C’. MIN
2-SAT is known to be NP-complete (see Alimonti et al. (1997)). Note that the problem is
equivalent to deciding if we can satisfy all clauses in C’ by setting to true ezactly k variables?
— we will consider that formulation of MIN 2-SAT in this proof.

Let 7/ = (X', C’" k) be an arbitrary instance of MIN 2-SAT. W.l.o.g. we can assume that
| X’| = 2n for some n € N (otherwise we can add a dummy variable).

If K =n, then 7' is an instance of HALF 2-SAT and there is nothing to show.

(i) Assume k > n. Introduce ¢ = 2k — 2n new variables yi,...,y,. Consider the instance
I" = (X",C" k), where X" = X' U{y;|1 < j </{}. Note that | X"| = 2n+ ¢ = 2k, and hence
7" is an instance of HALF 2-SAT. Clearly, 7’ is a “yes’-instance of MIN 2-SAT if and only if
7" is a “yes”-instance of HALF 2-SAT.

(i) Assume k < n. Introduce ¢ = 2n — 2k + 2 new variables y;,...,y, and the clauses
Dij = (yiVy;) for 1 <i < j</{ Let D:={D;;|l1 <i<j </} Asabove, let
X" =X'U{y]1 <j<{}. Let C =C'"UD and k =k +{— 1. Note that Z = (X", C, k)
is an instance of HALF 2-SAT, because |X"| = 2n+/{ = 4n — 2k +2 =2(2n — k + 1) and
k=k+0(—-—1=2n—k+1.

Next, we show that D can be satisfied by setting exactly ¢ — 1 variables to true, but cannot
be satisfied by setting less than ¢ — 1 variables to true:

Let 7 be the truth assignment defined by setting to true exactly the variables y1,vs ..., yr_1.
It is easy to see that 7 is a satisfying truth assignment for D, because by construction every
clause in D contains one of the variables set to true under 7. On the other hand, if there
are two variables yg,, yp, for some 1 < g < h </, not set to true under a truth assignment
1, then the clause D, — which, by construction is contained in D — is not satisfied by ).
Thus, D can be satisfied by setting exactly ¢ — 1 variables to true but cannot be satisfied
with setting to true a smaller number of variables. As an immediate consequence, C’ can
be satisfied by setting exactly k variables to true if and only if C can be satisfied by setting
exactly k = k + (¢ — 1) variables to true. O

Now, we are ready to prove that deciding if there exists a spanning tree which is “acceptable”
to all agents is NP-complete, and thus computationally difficult.

Theorem 3.2 ACCEPTABLE-TREE is NP-complete.

Proof. ACCEPTABLE-TREE is in NP: Given a certificate — i.e., a spanning tree 7" — it can
be verified in polynomial time, if |7\ T,| < k holds for all a € A.

To prove NP-hardness, we reduce HALF 2-SAT to ACCEPTABLE-TREE. Given an instance
Z = (X,C) of HALF 2-SAT, let X = {x1,29,...,29,} and C = {C},Cy,...,C,,} for some
n,m € N. Let, for 1 < j <m, C; = (z;, V z;,) with 1 < j; < jo <n. From Z, we construct

2If we can satisfy the clauses with setting to true exactly k variables, then obviously we can satisfy them
with setting to true at most k variables. If, on the other hand, the clauses can be satisfied with setting to
true r < k variables, then we can additionally set to true (k — r) arbitrary variables to get a satisfying truth
assignment that sets to true exactly k variables.
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Figure 1: Graph G = (V, E) in instance J of ACCEPTABLE-TREE

an instance J of ACCEPTABLE-TREE as follows.

First, we define the graph G = (V, E) (see also Fig. 1): we introduce the set of vertices
Vo= {r} U {u,v|l <t < 2n} and, for 1 <t < 2n, the edges f; = {r,v}, by = {r,u},
and z; = {us, v} (abusing notation, we identify a variable with an edge of the same label).
Hence, using the shortcuts F' = {f;|]1 <t < 2n} and H = {1 < t < 2n}, we formally
define £ := HU X U F. Note that |V| = 4n + 1, which implies that any spanning tree of G
must contain exactly |V| —1 = 4n edges.

Next we introduce the set of agents A = {o, B} U {v;|1 < j < m}. Agent o proposes the
spanning tree T,, = H U X of G, and /8 proposes the spanning tree T = H U F'. Finally, for
each 1 < j < m, agent 7; — representing clause C; — proposes the spanning tree containing
edges z;,,xj,, all edges in F'\ {f},, f,}, and all edges in H; that is,

T’Yj =HU {l’jl} U {l'jg} U (F \ {fjm sz})

In what follows, we prove that the following claim holds: Z = (X, C) is a “yes™instance of
HALF 2-SAT if and only if in instance J of ACCEPTABLE-TREE there is a spanning tree T’
such that |T'\ T,| < n for each a € A.

“=" Let 7 be a truth assignment that satisfies all clauses in C' and sets to true exactly n
variables of X. Let {x;,x,,...,x;, } be the set of variables set to true under 7. Consider
the spanning tree T" of G given by

T:=HU {I‘tl,l’tw .. .,l’tn} U (F\{ftl,ft2,. . ’7ftn}>
Note that T" contains exactly n edges of X and n edges of F'. Thus,
TNX|=|TNF|=n (1)

We need to check that |7\ T;,| < n holds for each a € A. Clearly, |T\T,| = nand |[T\Ts| = n
hold. Now, consider agent v; for some j € {1,...,m}. For calculating |T"\ T, |, note that

AT, =[(XNnT)\NXNT)] & [(FNT)\ (FNT,)] (2)

because the edge-set H is contained in both trees. Rewriting the second set difference in the
above equation yields

(FNT)\(FNTy) = (FOT)N(F\{fjy, [3) = [} 0T
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Together with X N'T,, = {z;,,2),}, equation (2) hence becomes

T\T’Yj = [(XﬂT)\{{l?jl,sz}] 2 [{fjmsz}mT] (3)
Since 7 is a satisfying truth assignment, at least one of the variables {xj,, z;,} that make up
clause C; is set to true under 7. Le., at least one of the edges {xj,,x;,} is contained in 7.
We distinguish the following cases.

(i) {zj,, x5} NT| =1: W.lo.g. let zj, € T. Hence, x;, ¢ T. By construction of the graph
G and because of H C T, this implies f;, & T and f;, € T. Thus, {f;,, [} NT = {fi}-
Since xj, € T and xj, ¢ T, with (1) we get (X NT)\{z;,,z;,}| = n—1. Equation (3) hence
implies [T'\T,,| = (n—1)+1=n.

(i) {xj,xj,} NT| = 2: That is, xj, € T and xj, € T. Thus, f;, ¢ T and f;, € T due to
H C T. As a consequence, {f;,, fi,} N T = 0. In addition, (X NT)\ {zj,, 2z} =n—2
because 1" contains exactly n edges of X (stated in (1)). With (3), this yields |T'\ T},| =
(n—2)+0=n-2.

Summing up, |1\ T,| < n holds for each a € A.

“<" On the other hand, let 7" be a spanning tree of G with |T"\ T,| < n for each a € A.
First, we show that this implies the existence of a spanning tree 7" of G with |T'\ T,| < n
for each a € A such that H C T holds:

If H C T’, there is nothing to show. Assume H ¢ T’. By construction, for each 1 <t < 2n
such that hy ¢ T', we must have {z;, f;} C T"'. Create T from 7" by replacing, for each such
index t with {z¢, fi} C T, the edge f; with h;. Since for each agent a € A, H C T, holds,
T\ T,| <|T"\T,| < n follows. Therewith, there is a spanning tree 7" of G with |T'\T,| <n
for each a € A such that H C T holds.

Now, consider the agents in A. Observe that |T\T,| < nimplies | XNT'| > n, and |T\Ts| < n
implies |[FFNT| > n. Due to H C T and the fact that |T'| = 4n, this means that

IXNT|=|FNT|=n (4)

holds.

Next, we show that for each ~;, at least one of {z;,,z;,} is contained in 7. Assume that for
some 1 < j < m, both z;, € T and x;, ¢ T hold. Since 7' is a spanning tree of G, we can
conclude that f;, € T and f;, € T hold. As stated in (4), |X NT| = n. In particular, with
the fact that z;, ¢ T" and z;, ¢ T, this means

(X NT)\A{zj, 25 = n (5)
Since (i) x;,, x;, are the only edges in X contained in T, and (ii) f;, and f;, are the only
edges in F' that are not contained in 7', we get
TAT, =[(XnT)\(XNT)]w [(FNT)\ (FNT)] = [(X0T)\ Az, 25 )] & {5, fin}
With (5), [T\ T,,| = n + 2 follows, which contradicts our assumption that [T"\ T,| < n is
satisfied for each a € A.
Thus, for each v;, at least one of {x;,,x;,} is contained in 7. Hence, the truth assignment
¢ that sets to true exactly the variables in X N7, for each clause C; sets to true at least

one of the variables {xj,,z;,} contained in the clause. Due to (4), ¢ sets to true exactly n
of the 2n variables in X, which completes the proof. U
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