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1. Introdu
tion

Spanning trees of undire
ted graphs play a major role in the 
onstru
tion of networks of

various kind. Apart from the underlying optimization exer
ise itself, in the last de
ades

spanning trees have re
eived a lot of attention in 
onne
tion with fairness issues. In that


ontext, the overwhelming fo
us was laid on dividing the 
ost of a spanning tree of minimum

total 
ost between a set of agents in a fair manner (among many others, see, e.g., the works

of Bird (1976), Kar (2002), Dutta and Kar (2004), Bergantiños and Vidal-Puga (2007), and

Bogomolnaia and Moulin (2010)).

The task of 
onstru
ting a �fair� spanning tree itself, i.e., a tree whi
h is a

eptable to the

whole group of agents, has re
eived 
omparatively little attention, some representatives be-

ing the works of Darmann et al. (2009), Darmann (2013), and Es
o�er et al. (2013). Similar

to their works, we also 
onsider the problem of �nding a �fair� spanning tree from a 
ompu-

tational perspe
tive. However, in our 
ontext, we 
onsider the situation in whi
h ea
h agent

proposes a spe
i�
 solution, i.e., spanning tree. The goal is to determine a spanning tree

whi
h is fair or a

eptable in the sense of not di�ering "too mu
h" from ea
h of the solutions

proposed by the agents.

In prin
iple, we are thus 
on
erned with the 
omputational 
omplexity involved in the aggre-

gation of a number of spanning trees proposed by the agents into a single spanning tree.

1

In

a di�erent, preferen
e-based environment, Endriss and Grandi (2012) 
onsider the problem

of aggregating dire
ted graphs (proposed by agents) into a single graph; instead of fo
us-

ing on 
omputational 
omplexity however, Endriss and Grandi (2012) 
hoose an axiomati


viewpoint.

The problem we 
onsider arises in situations in whi
h a network in the form of a spanning

tree needs to be 
onstru
ted (e.g., sewage systems, tele
ommuni
ation or power networks and

pipelines of any kind), and the respe
tive de
ision makers have, possibly di�ering, opinions

on how the a
tual network should look like. As an example, 
onsider the situation in whi
h

an oil pipeline system should be built, 
onne
ting all the 
ountries involved. Ea
h of the


ountries, however, (for politi
al, e
onomi
 or environmental reasons) proposes a di�erent

spe
i�
 solution of how the system should 
onne
t the 
ountries. The task now is to �nd a

solution, i.e., a spanning tree, whi
h all of the 
ountries �a

ept�.

In our framework, we use the following intuitive measure of a

eptan
e: an agent a

epts a

spanning tree T , if the number of edges that are in T but not in the spanning tree proposed

by the agent, does not ex
eed a given upper bound. In this work, we show that it is


omputationally intra
table to �nd a tree that is a

eptable to all agents. This result adds

to the results of Darmann et al. (2009), where the 
omputational 
omplexity of �nding su
h

a fair spanning tree is analyzed when agents approve or disapprove of single edges (instead

of proposing a whole spanning tree).

1

This falls into the s
ope of Computational So
ial Choi
e (for overviews of that area see Endriss (2011)

and Lang (2005)).
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2. Formal framework and problem de�nition

We start with the formal framework of this paper. An undire
ted graph G = (V,E) 
onsists
of a �nite set V and a set E of two-element subsets of V . We 
all the elements of V verti
es

and the elements of E edges. A 
y
le is a sequen
e of verti
es v0, v1, . . . , vn with n ≥ 3 su
h

that (i) v0 = vn, (ii) vi 6= vj for (i, j) 6= (0, n), and (iii) {vi−1, vi} ∈ E for 1 ≤ i ≤ n. A

subset T ⊆ E with |T | = |V | − 1 is 
alled a spanning tree of G, if (V, T ) 
ontains no 
y
le.

Now, given a graph G = (V,E) and a set A of agents, ea
h a ∈ A proposes a spanning

tree Ta of G. The goal is to �nd a spanning tree T that minimizes the �distan
e� to the

agents' proposals. Using the symmetri
 set di�eren
e as basis, there are two natural ways of

approa
hing this problem. The �rst one aims at �nding a spanning tree T whi
h minimizes

the total distan
e, i.e., minimizes

∑
a∈A |T \ Ta|. The se
ond one uses a more egalitarian

approa
h and looks for a spanning tree T that minimizes the maximum distan
e, i.e., mini-

mizes maxa∈A |T \ Ta|.
These two di�erent approa
hes raise the question of the 
omputational 
omplexity involved

in ea
h of the problems. It is not hard to see that the �rst approa
h redu
es to the 
lassi
al

maximum spanning tree problem and is hen
e easy to solve. In 
ontrast, we will show that

the se
ond approa
h leads to a problem whi
h is 
omputationally di�
ult. Before going into

details, that problem is formally de�ned as follows.

De�nition 2.1 (A

eptable-Tree)

GIVEN: Set A of agents, undire
ted graph G, spanning trees Ta of G for a ∈ A,
k ∈ N.

QUESTION: Is there a spanning tree T of G su
h that |T \ Ta| ≤ k for all a ∈ A?

3. A

eptable-Tree is NP-
omplete

In this se
tion, we show that A

eptable-Tree is an NP-
omplete problem. We will

prove this by providing a redu
tion from Half 2-Sat, a spe
ial 
ase of the Minimum 2-
Satisfiability Problem (Min 2-Sat).

De�nition 3.1 (Half 2-Sat)

GIVEN: Set X of variables with |X| = 2n for some n ∈ N, set C of (disjun
tive)


lauses over X su
h that every 
lause is made up of exa
tly two variables.

QUESTION: Is there a truth assignment τ for X that satis�es all 
lauses of C, su
h that

the number of variables set to true under τ is exa
tly

|X|
2
?

Note that in Half 2-Sat, the 
lauses 
onsist of variables and not of literals, i.e., there are

no negated literals in Half 2-Sat. First, we show that Half 2-Sat itself is NP-
omplete.

Theorem 3.1 Half 2-Sat is NP-
omplete.
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Proof. Clearly, Half 2-Sat is in NP. To show NP-hardness, we provide a redu
tion from

Min 2-Sat. Given a set X ′
of variables, a set C ′

of (disjun
tive) 
lauses made up of exa
tly

two variables of X ′
, and k ∈ N, Min 2-Sat is the task to de
ide if there exists a truth

assignment τ ′ setting to true at most k variables of X ′
that satis�es all 
lauses of C ′

. Min

2-Sat is known to be NP-
omplete (see Alimonti et al. (1997)). Note that the problem is

equivalent to de
iding if we 
an satisfy all 
lauses in C ′
by setting to true exa
tly k variables2

� we will 
onsider that formulation of Min 2-Sat in this proof.

Let I ′ = (X ′, C ′, k) be an arbitrary instan
e of Min 2-Sat. W.l.o.g. we 
an assume that

|X ′| = 2n for some n ∈ N (otherwise we 
an add a dummy variable).

If k = n, then I ′
is an instan
e of Half 2-Sat and there is nothing to show.

(i) Assume k > n. Introdu
e ℓ = 2k − 2n new variables y1, . . . , yℓ. Consider the instan
e

I ′′ = (X ′′, C ′, k), where X ′′ = X ′∪{yj|1 ≤ j ≤ ℓ}. Note that |X ′′| = 2n+ ℓ = 2k, and hen
e

I ′′
is an instan
e of Half 2-Sat. Clearly, I ′

is a �yes�-instan
e of Min 2-Sat if and only if

I ′′
is a �yes�-instan
e of Half 2-Sat.

(ii) Assume k < n. Introdu
e ℓ = 2n − 2k + 2 new variables y1, . . . , yℓ and the 
lauses

Di,j := (yi ∨ yj) for 1 ≤ i < j ≤ ℓ. Let D := {Di,j|1 ≤ i < j ≤ ℓ}. As above, let

X ′′ = X ′ ∪ {yj|1 ≤ j ≤ ℓ}. Let C̃ = C ′ ∪ D and k̃ = k + ℓ − 1. Note that Ĩ = (X ′′, C̃, k̃)
is an instan
e of Half 2-Sat, be
ause |X ′′| = 2n + ℓ = 4n − 2k + 2 = 2(2n − k + 1) and
k̃ = k + ℓ− 1 = 2n− k + 1.
Next, we show that D 
an be satis�ed by setting exa
tly ℓ− 1 variables to true, but 
annot

be satis�ed by setting less than ℓ− 1 variables to true:

Let τ be the truth assignment de�ned by setting to true exa
tly the variables y1, y2 . . . , yℓ−1.

It is easy to see that τ is a satisfying truth assignment for D, be
ause by 
onstru
tion every


lause in D 
ontains one of the variables set to true under τ . On the other hand, if there

are two variables yg, yh, for some 1 ≤ g < h ≤ ℓ, not set to true under a truth assignment

ψ, then the 
lause Dg,h � whi
h, by 
onstru
tion is 
ontained in D � is not satis�ed by ψ.
Thus, D 
an be satis�ed by setting exa
tly ℓ − 1 variables to true but 
annot be satis�ed

with setting to true a smaller number of variables. As an immediate 
onsequen
e, C ′

an

be satis�ed by setting exa
tly k variables to true if and only if C̃ 
an be satis�ed by setting

exa
tly k̃ = k + (ℓ− 1) variables to true. �

Now, we are ready to prove that de
iding if there exists a spanning tree whi
h is �a

eptable�

to all agents is NP-
omplete, and thus 
omputationally di�
ult.

Theorem 3.2 A

eptable-Tree is NP-
omplete.

Proof. A

eptable-Tree is in NP: Given a 
erti�
ate � i.e., a spanning tree T � it 
an

be veri�ed in polynomial time, if |T \ Ta| ≤ k holds for all a ∈ A.
To prove NP-hardness, we redu
e Half 2-Sat to A

eptable-Tree. Given an instan
e

I = (X,C) of Half 2-Sat, let X = {x1, x2, . . . , x2n} and C = {C1, C2, . . . , Cm} for some

n,m ∈ N. Let, for 1 ≤ j ≤ m, Cj = (xj1 ∨ xj2) with 1 ≤ j1 < j2 ≤ n. From I, we 
onstru
t

2

If we 
an satisfy the 
lauses with setting to true exa
tly k variables, then obviously we 
an satisfy them

with setting to true at most k variables. If, on the other hand, the 
lauses 
an be satis�ed with setting to

true r < k variables, then we 
an additionally set to true (k− r) arbitrary variables to get a satisfying truth

assignment that sets to true exa
tly k variables.
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Figure 1: Graph G = (V,E) in instan
e J of A

eptable-Tree

an instan
e J of A

eptable-Tree as follows.

First, we de�ne the graph G = (V,E) (see also Fig. 1): we introdu
e the set of verti
es

V := {r} ∪ {ut, vt|1 ≤ t ≤ 2n} and, for 1 ≤ t ≤ 2n, the edges ft = {r, vt}, ht = {r, ut},
and xt = {ut, vt} (abusing notation, we identify a variable with an edge of the same label).

Hen
e, using the short
uts F = {ft|1 ≤ t ≤ 2n} and H = {ht|1 ≤ t ≤ 2n}, we formally

de�ne E := H ∪X ∪ F . Note that |V | = 4n+ 1, whi
h implies that any spanning tree of G
must 
ontain exa
tly |V | − 1 = 4n edges.

Next we introdu
e the set of agents A = {α, β} ∪ {γj|1 ≤ j ≤ m}. Agent α proposes the

spanning tree Tα = H ∪X of G, and β proposes the spanning tree Tβ = H ∪ F . Finally, for
ea
h 1 ≤ j ≤ m, agent γj � representing 
lause Cj � proposes the spanning tree 
ontaining

edges xj1, xj2 , all edges in F \ {fj1, fj2}, and all edges in H ; that is,

Tγj := H ∪ {xj1} ∪ {xj2} ∪ (F \ {fj1, fj2})

In what follows, we prove that the following 
laim holds: I = (X,C) is a �yes�-instan
e of

Half 2-Sat if and only if in instan
e J of A

eptable-Tree there is a spanning tree T
su
h that |T \ Ta| ≤ n for ea
h a ∈ A.

�⇒�: Let τ be a truth assignment that satis�es all 
lauses in C and sets to true exa
tly n
variables of X . Let {xt1 , xt2 , . . . , xtn} be the set of variables set to true under τ . Consider

the spanning tree T of G given by

T := H ∪ {xt1 , xt2 , . . . , xtn} ∪ (F \ {ft1 , ft2 , . . . , ftn})

Note that T 
ontains exa
tly n edges of X and n edges of F . Thus,

|T ∩X| = |T ∩ F | = n (1)

We need to 
he
k that |T \Ta| ≤ n holds for ea
h a ∈ A. Clearly, |T \Tα| = n and |T \Tβ| = n
hold. Now, 
onsider agent γj for some j ∈ {1, . . . , m}. For 
al
ulating |T \ Tγj |, note that

T \ Tγj = [(X ∩ T ) \ (X ∩ Tγj )] ⊎ [(F ∩ T ) \ (F ∩ Tγj )] (2)

be
ause the edge-set H is 
ontained in both trees. Rewriting the se
ond set di�eren
e in the

above equation yields

(F ∩ T ) \ (F ∩ Tγj ) = (F ∩ T ) \ (F \ {fj1 , fj2}) = {fj1, fj2} ∩ T
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Together with X ∩ Tγj = {xj1 , xj2}, equation (2) hen
e be
omes

T \ Tγj = [(X ∩ T ) \ {xj1 , xj2}] ⊎ [{fj1, fj2} ∩ T ] (3)

Sin
e τ is a satisfying truth assignment, at least one of the variables {xj1, xj2} that make up


lause Cj is set to true under τ . I.e., at least one of the edges {xj1, xj2} is 
ontained in T .
We distinguish the following 
ases.

(i) |{xj1, xj2} ∩ T | = 1: W.l.o.g. let xj1 ∈ T . Hen
e, xj2 /∈ T . By 
onstru
tion of the graph

G and be
ause of H ⊂ T , this implies fj1 6∈ T and fj2 ∈ T . Thus, {fj1, fj2} ∩ T = {fj2}.
Sin
e xj1 ∈ T and xj2 /∈ T , with (1) we get |(X ∩T ) \ {xj1, xj2}| = n−1. Equation (3) hen
e

implies |T \ Tγj | = (n− 1) + 1 = n.

(ii) |{xj1, xj2} ∩ T | = 2: That is, xj1 ∈ T and xj2 ∈ T . Thus, fj1 6∈ T and fj2 6∈ T due to

H ⊂ T . As a 
onsequen
e, {fj1, fj2} ∩ T = ∅. In addition, |(X ∩ T ) \ {xj1 , xj2}| = n − 2
be
ause T 
ontains exa
tly n edges of X (stated in (1)). With (3), this yields |T \ Tγj | =
(n− 2) + 0 = n− 2.

Summing up, |T \ Ta| ≤ n holds for ea
h a ∈ A.

�⇐�: On the other hand, let T ′
be a spanning tree of G with |T ′ \ Ta| ≤ n for ea
h a ∈ A.

First, we show that this implies the existen
e of a spanning tree T of G with |T \ Ta| ≤ n
for ea
h a ∈ A su
h that H ⊂ T holds:

If H ⊂ T ′
, there is nothing to show. Assume H 6⊂ T ′

. By 
onstru
tion, for ea
h 1 ≤ t ≤ 2n
su
h that ht /∈ T ′

, we must have {xt, ft} ⊂ T ′
. Create T from T ′

by repla
ing, for ea
h su
h

index t with {xt, ft} ⊂ T , the edge ft with ht. Sin
e for ea
h agent a ∈ A, H ⊂ Ta holds,

|T \Ta| ≤ |T ′ \Ta| ≤ n follows. Therewith, there is a spanning tree T of G with |T \Ta| ≤ n
for ea
h a ∈ A su
h that H ⊂ T holds.

Now, 
onsider the agents in A. Observe that |T \Tα| ≤ n implies |X∩T | ≥ n, and |T \Tβ| ≤ n
implies |F ∩ T | ≥ n. Due to H ⊂ T and the fa
t that |T | = 4n, this means that

|X ∩ T | = |F ∩ T | = n (4)

holds.

Next, we show that for ea
h γj, at least one of {xj1 , xj2} is 
ontained in T . Assume that for

some 1 ≤ j ≤ m, both xj1 6∈ T and xj2 /∈ T hold. Sin
e T is a spanning tree of G, we 
an


on
lude that fj1 ∈ T and fj2 ∈ T hold. As stated in (4), |X ∩ T | = n. In parti
ular, with

the fa
t that xj1 6∈ T and xj2 /∈ T , this means

|(X ∩ T ) \ {xj1 , xj2})| = n (5)

Sin
e (i) xj1, xj2 are the only edges in X 
ontained in Tγj , and (ii) fj1 and fj2 are the only

edges in F that are not 
ontained in Tγj , we get

T \ Tγj = [(X ∩ T ) \ (X ∩ Tγj )] ⊎ [(F ∩ T ) \ (F ∩ Tγj )] = [(X ∩ T ) \ {xj1, xj2})] ⊎ {fj1, fj2}

With (5), |T \ Tγj | = n + 2 follows, whi
h 
ontradi
ts our assumption that |T \ Ta| ≤ n is

satis�ed for ea
h a ∈ A.
Thus, for ea
h γj, at least one of {xj1 , xj2} is 
ontained in T . Hen
e, the truth assignment

ϕ that sets to true exa
tly the variables in X ∩ T , for ea
h 
lause Cj sets to true at least

one of the variables {xj1 , xj2} 
ontained in the 
lause. Due to (4), ϕ sets to true exa
tly n
of the 2n variables in X , whi
h 
ompletes the proof. �
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