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1. INTRODUCTION

Modern investment theory dates back to the mean-variance analysis of Markowitz (1952, 1959), which is expected
to hold if asset prices are normally distributed or the investor preferences are quadratic. Undoubtedly, the most
consequential fruit of Markowitz’ seminal work was the introduction of the capital asset pricing model (CAPM) by
Sharpe (1964), Lintner (1965), and Mossin (1966). The key ideas of this model are that investors are mean-variance
optimizers facing a frictionless market with full agreement on the distribution of security returns and unrestricted
access to borrowing and lending at the riskless rate. As an asset pricing model, CAPM is an equilibrium model valid
for a given investment horizon, which is taken to be the same for all investors. Indeed investors are solely distinguished
by their level of risk aversion.

Principal portfolio analysis, on the other hand, simplifies asset allocation by recasting the asset set into uncorrelated
portfolios when short sales are allowed (Partovi and Caputo 2004). Stated otherwise, the original problem of stock
selection from a set of correlated assets is transformed into the much simpler problem of choosing from a set of
uncorrelated portfolios. This transformation is particularly effective when one of these principal portfolios is aligned
with the overall market, thus rendering the remaining portfolios uncorrelated with the market, or zero-beta portfolios.
The details of this transformation are given in Partovi and Caputo (2004), where the results are summarized as

follows: Every investment environment {si, ri, σij}Ni,j=1 which allows short sales can be recast as a principal portfolio

environment {Sµ, Rµ,Vµν}Nµ,ν=1 where the principal covariance matrix V is diagonal. The weighted mean of the

principal variances equals the mean variance of the original environment. In general, a typical principal portfolio
is hedged and leveraged. Here si (Sµ), ri (Rµ), and σij (Vµν) represent the assets, the expected returns, and the
covariance matrix of the original (recast) set, while N is the size of the asset set. It was further shown in Partovi and
Caputo (2004) that the efficient frontier in the presence of a riskless asset has a simple allocation rule which requires
that each principal portfolio be included in inverse proportion to its variance. Practical applications of principal
portfolios have already been considered by several authors, for example, Poddig and Unger (2012) and Kind (2013).

In this paper we present a perturbative calculation of the principal portfolios of the single-index CAPM in the
large N limit. The results of this calculation are in general expected to entail a relative error of the order of 1/N2.
However, since any application of the single-index CAPM is most likely to involve a large asset set, the stated error is
normally quite small and in any case majorized by modelling errors. Thus the results to be reported here are accurate
implications of the underlying model.

The principal portfolio analysis of the single-index model and an exactly solvable version of it presented in §3
highlight the volatility structure of principal portfolios in a practical and familiar context. A remarkable result of
the analysis is the bifurcation of the set of principal portfolios into a market-aligned portfolio, which is unleveraged
and behaves rather like a total-market index fund, and N − 1 market-orthogonal portfolios, which are hedged and
leveraged,1 and nearly free of market driven fluctuations. The latter set of N − 1 portfolios are in effect zero-beta
portfolios. This equivalency between the original asset set and two classes of principal portfolios is reminiscent of,
but fundamentally different from, Merton’s (1972) two mutual fund theorems. The market-orthogonal portfolios, on
the other hand, provide a vivid demonstration of the effect of leveraging on the volatility level of a portfolio.

2. PRINCIPAL PORTFOLIOS OF THE SINGLE-INDEX MODEL

Here we shall analyze the standard single-index model as well as an exactly solvable special case of it with respect to
their principal portfolio structure. Remarkably, our analysis will uncover interesting and hitherto unnoticed properties
of well-diversified and arbitrarily leveraged portfolios within the single-index model.

Consider a set of N assets {si}, 1 ≤ i ≤ N , whose rates of return are normally distributed random variables given
by

ρi
def
= αi + βiρmkt, (1)

where αi and ρmkt are uncorrelated, normally distributed random variables with expected values and variances equal
to ᾱi, ρ̄mkt and ᾱ2

i , ρ̄
2
mkt, respectively. The quantity βi associated with asset si is a constant which measures the

degree to which si is coupled to the overall market variations. Thus the attributes of a given asset are assumed
to consist of a market-driven (or systematic) part described by (βiρmkt, β

2
i ρ̄

2
mkt) and a residual (or specific) part

described by (αi, ᾱ2
i ), with the two parts being uncorrelated.

1 We use the term “leveraged” here to imply that the portfolio contains borrowed assets, e.g., short-sold positions.
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The expected value of Eq. (1) is given by

ρ̄i
def
= ri = ᾱi + βiρ̄mkt. (2)

The covariance matrix which results from Eq. (1) is similarly a superposition of the specific and market-driven
contributions, as would be expected of the sum of two uncorrelated variables. It can be written as

σij = ᾱ2
i δij + βiβj ρ̄2mkt. (3)

Note that σ is a definite matrix, since we have excluded riskless assets from the asset set for the time being.
We shall assume here that the number of assets N is appropriately large, as is in fact implicit in the formulation

of all index models, so that the condition ᾱ2
i /Nb

2ρ̄2mkt � 1 is satisfied; here b
def
= (

∑N
i=1β

2
i /N)

1
2 is the square root

of the average value of β2
i , typically of the order of unity. These assumptions are not essential to our discussion, but

they do simplify the presentation and more importantly, they are usually well satisfied for appropriately large values
of N and guarantee that our purturbative results below are accurate for practical applications.

Under the above assumptions it is appropriate to rescale the covariance matrix as in σij = Nb2ρ̄2mktσ̃ij , where

σ̃ij
def
= γ2i δij + β̂iβ̂j (4)

is a dimensionless matrix. Here β̂i
def
= βi/(

∑N
i=1β

2
i )

1
2 , so that β̂ = (β̂1, β̂2, . . . , β̂N ) is a unit vector, and γ2i

def
=

ᾱ2
i /Nb

2ρ̄2mkt � 1 as concluded above.
The above representation of the covariance matrix for the single-index model is quite suitable for revealing the

structure of its eigenvalues and eigenvectors, these being closely related to the rescaled principal variances and the
principal portfolios we are seeking. The structure in question is actually discernible on the basis of simple, qualitative
considerations of the spectrum of σ̃. To see this structure, let us first note that the sum of the eigenvalues of σ̃, which

is given by tr(σ̃)
def
=

∑N
i=1σ̃ii, equals 1+

∑N
i=1γ

2
i . We will show below that the largest eigenvalue of σ̃ is approximately

equal to unity, so that the remaining N − 1 eigenvalues have an average value approximately equal to the average
of {γ2i }, which was shown above to be much smaller than unity as a consequence of the large N assumption. Thus,
barring a strongly skewed distribution of the latter, which is all but ruled out for any of the customary asset classes,
we find that the spectrum of σ̃ consists of a “major” eigenvalue close to unity, and N − 1 “minor” eigenvalues each
much smaller than unity. Stated in terms of the spectrum of V, this implies that the principal portfolios separate
into two classes of quite different properties, namely (i) a single market-aligned portfolio with a variance of magnitude
approximately equal to Nb2ρ̄2mkt/WN

2, and (ii) N − 1 market-orthogonal portfolios whose variances have a weighted
average approximately equal to the average of the residual variance of the original asset set. As one might suspect,
these two categories are characterized by sharply different values of portfolio beta,2 the former with a value of the
order of unity typical of the asset set, and the remaining N − 1 portfolios with nearly vanishing values of beta (cf.
§3).

To see the quantitative details of the foregoing qualitative analysis, we now turn to a perturbative treatment of the
spectrum of σ̃. The eigenvalue equation for σ̃ reads

(σ̃eµ)i = γ2i e
µ
i + β̂ · eµβ̂i = ṽ2µe

µ
i , (5)

where eµ is the µth eigenvector, eµi is the ith component of that eigenvector, and ṽ2µ is the corresponding eigenvalue,
all quantities as defined earlier. Because of its simple structure, Eq. (5) can be implicitly solved for the components
of the eigenvectors to yield

eµi = [β̂ · eµ/(ṽ2µ − γ2i )]β̂i. (6)

Upon multiplying this equation by β̂i and summing over i, we find the characteristic equation for the eigenvalues. It
reads

1 =
∑N

i=1
[β̂2
i /(ṽ

2
µ − γ2i )]. (7)

This equation can be rearranged as an Nth-order polynomial equation in the variable ṽ2µ, the µth eigenvalue of σ

divided by Nb2ρ̄2mkt, and is guaranteed to have N real, positive roots (with multiple roots counted according to

2 Here the portfolio beta is defined to be the weighted mean of beta in the single-index model literature
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their multiplicity). Once these roots are determined, they can be used in Eq. (6) to find the eigenvectors in the usual
manner.

As mentioned earlier, the structure of σ̃ allows an approximate determination of its largest eigenvalue when N
is suitably large, say a hundred or more. This is of course a significant advantage in any numerical solution of the
equations described in the preceding paragraph. As one can see from Eq. (4), the matrix in question, σ̃, is the sum
of two parts, one is diagonal with elements γ2i which are much smaller than unity, and the other a rank-1 matrix
with eigenvalue equal to unity. This implies that the eigenvector of the latter matrix is an approximate eigenvector
of σ̃ with eigenvalue approximately equal to unity. This is the eigenvalue we designated as major in our qualitative

discussion. Let this be the Nth eigenvalue, so that ṽ2N
def
= 1 + εN , with |εN | � 1. Substituting this expression for ṽ2N

in Eq. (7), and treating the resulting equation to first order in γ2i ,3 we find

ṽ2N ' 1 +
∑N

i=1
γ2i β̂

2
i , (8)

which identifies εN as equal to
∑N
i=1γ

2
i β̂

2
i to first order, thus verifying the condition |εN | � 1. The corresponding

eigenvector can now be found from Eq. (6); to first order, it is given by

eNi ' (1 + γ2i −
∑N

j=1
γ2j β̂

2
j )β̂i, (9)

where the conditions of unit length and non-negative relative weight stipulated earlier have already been imposed
within the stated order of approximation.

Equation (9) specifies the (relative) composition of the market-aligned portfolio. The relative weight WN of this

portfolio, on the other hand, is expected to be of the order of N
1
2 , since this portfolio consists entirely of purchased

assets (recall our estimate of the relative weights earlier in §2). Indeed one can see from Eq. (9) that WN '
∑N
i=1β̂i

in the leading order of approximation,4 which confirms the above-stated estimate (recall that the average of the β̂2
i

equals N−1). Equations (8) and (9) provide approximate expressions for the major eigenvalue and eigenvector of the
covariance matrix of the single-index model.

Rescaling Eqs. (8) and (9) back to original variables, we find, for the variance and the composition of the market-
aligned principal portfolio, the expressions

VN
2 ' [1 + 3

∑N

i=1
γ2i β̂

2
i − (

∑N

i=1
β̂i)
−1∑N

i=1
γ2i β̂i](β · β)ρ̄2mkt/(

∑N

i=1
β̂i)

2

, (10)

eNi /WN ' [1 + γ2i − (
∑N

i=1
β̂i)
−1∑N

i=1
γ2i β̂i]β̂i/(

∑N

j=1
β̂j), (11)

where we have left the small correction terms in dimensionless form. It is clear from Eq. (11) that the market-aligned
portfolio is basically composed by investing in each asset in proportion to how strongly it is correlated with the overall
market fluctuations, i.e., in proportion to the value of its beta; cf. Eq. (1). Consequently, it is expected to be strongly
suseptible to market-driven fluctuations. Indeed as one can see from Eq. (10), the variance of this principal portfolio
in the leading order is given by (Nb2/WN

2)ρ̄2mkt, which is of the same order of magnitude as ρ̄2mkt (recall that b is

of the same approximate magnitude as a typical β and that WN is of the order of N
1
2 ). The market-aligned portfolio

is therefore seen to be that principal portfolio which approximately reflects the volatility profile of the market as a
whole. Moreover, since it entirely composed of purchased assets, it is neither hedged nor leveraged.

By contrast, the remaining N − 1 market-orthogonal principal portfolios are in general hedged and leveraged, and

they are quite immune to overall market fluctuations5. In fact, since
∑N
µ=1v

2
µ = tr(σ) = β ·βρ̄2mkt(1 +

∑N
i=1γ

2
i ), and

v2N ' β · βρ̄2mkt +
∑N
i=1β̂

2
i ᾱ

2
i , we find for the the average value of the N − 1 minor eigenvalues

(N − 1)
−1∑N−1

µ=1
v2µ = (N − 1)

−1∑N−1

µ=1
Wµ

2Vµ
2 ' (N − 1)

−1∑N

i=1
(1− β̂2

i )ᾱ2
i . (12)

Thus the weighted average of principal variances for market-orthogonal portfolios is approximately equal to (and in
fact less than) the average of the residual variances of the original asset set. Therefore, these N−1 market-orthogonal

3 This is the approximation in which any contribution to ṽ2N whose ratio to γ2i vanishes in the N → ∞ limit will be neglected.
4 This is the approximation in which any contribution to WN whose ratio to β̂i vanishes in the N → ∞ limit will be neglected.
5 These market-orthogonal portfolios essentially eliminate what is referred to as “market risk” in the single-index model jargon
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principal portfolios are free not only of mutual correlations with other portfolios but in general also of the volatility
induced by overall market fluctuations. In other words, they are a set of zero-beta portfolios. This feat is possible in
part because of the very special structure of the single-index model which makes it possible to isolate essentially all
of the systematic market volatility in one portfolio, leaving the remaining N − 1 portfolios almost totally immune to
systematic market fluctuations.

There is an important caveat with respect to the foregoing statement. Recall that there is an inverse relationship
between Vµ, defined as the positive square root of V 2

µ , and Wµ, so that for highly leveraged portfolios which are
characterized by the condition Wµ � 1, the above argument would imply a principal variance far exceeding the
original ones. Of course the condition Wµ � 1 that implies such large variances also implies large expected returns,

so that a more sensible comparative measure under such conditions is V̌µ
def
= Vµ/Rµ = vµ/

∑N
i=1e

µ
i ri, which may be

called return-adjusted volatility of the principal portfolio. As expected, the relative weight Wµ is no longer present in
this adjusted version of the volatility.

The return-adjusted volatility for the market-aligned portfolio, on the other hand, can be calculated from Eqs. (1),
(10), and (11). It is given by

V̌N ' {1− [(ρ̄2mkt)
1
2 /ρ̄mkt]

∑N

i=1
γiβ̂i}(ρ̄2mkt)

1
2 /ρ̄mkt, (13)

which is approximately equal to (ρ̄2mkt)
1
2 /ρ̄mkt. This ratio is of course precisely what one would expect for the

approximate value of the return-adjusted volatility of a portfolio which is aligned with the overall market price
movements.

It is appropriate at this point to summarize the properties of the principal portfolios for the single-index model.
Proposition 1. The principal portfolios of the single-index model consist of a market-aligned portfolio, which is

unleveraged and has a return-adjusted volatility ' (ρ̄2mkt)
1
2 /ρ̄mkt characteristic of market-driven price movements,

and N − 1 market-orthogonal (or zer-beta) portfolios which are hedged and leveraged. Equations (10)-(13) provide
approximate expressions valid to first order in 1/N for the properties of these portfolios.

3. SINGLE-INDEX MODEL WITH CONSTANT RESIDUAL VARIANCE

To provide an explicit illustration of the principal portfolio structure within the single-index model described in
the preceding section, we now turn to an exactly solvable, albeit oversimplified, version of that model. This model
is defined by the assumption that the residual variance of the ith asset in the original set, ᾱ2

i , is equal to ᾱ2 for all
assets. Observe that this assumption does not affect the expected rate of return for the ith asset, which is given by
ri = ᾱi + βiρ̄mkt as before. This simplification will allow us to derive an exact solution for the model and illustrate
the concepts and methods of the previous section in more explicit terms.

The covariance matrix with the above simplification appears as

σcrvij = ᾱ2δij + βiβj ρ̄2mkt, (14)

whose rescaled version is

σ̃crvij = γ2δij + β̂iβ̂j (15)

These equations are of course specialized versions of Eqs. (3) and (4).
Referring to the results of the previous section, one can readily see that the spectrum of σ̃crv consists of a major

eigenvalue (exactly) equal to 1 + γ2 [cf. Eq. (8)], and N − 1 minor eigenvalues, all equal to γ2. Recall that these
eigenvalues respectively correspond to the market-aligned and market-orthogonal portfolios introduced in §4.1. Not
surprisingly, the spectrum of σ̃crvij is found to be highly degenerate. The eigenvector ecrvN corresponding to the

major eigenvalue is (exactly) equal to β̂i [cf. Eq. (9)], while the remaining N − 1 minor eigenvectors are not uniquely
determined6 and may be arbitrarily chosen to be any orthonormal set of N − 1 vectors orthogonal to the major

eigenvector β̂i. The expected return and volatility features of the N − 1 market-orthogonal portfolios defined by this
arbitrary choice, on the other hand, do depend on that choice, as the following analysis will show.

Since our main objective is the determination of the efficient frontier, we shall choose the remaining N − 1 eigen-
vectors with respect to their volatility level, which, it may be recalled from §2, is given by Vµ

2 = v2µ/Wµ
2. For the

6 This is of course the exceptional case of spectrum degeneracy mentioned in §2.
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present case, minimizing Vµ amounts to maximizing Wµ. Therefore, we will look for a unit vector e that is orthogonal

to β̂ as stipulated above and maximizes
∑N
i=1ei. In terms of rescaled quantities, this problem appears as

max e e · û s.t. e · e = 1, e · β̂ = 0, (16)

where ûi
def
= N−

1
2 (1, 1, . . . , 1) is an N -dimensional unit vector all of whose components are equal. The solution to

Eq. (16) may be found by standard methods provided that û and β̂ are not parallel, a condition whose violation is
very improbable and will henceforth be assumed to hold. On the other hand, it is clear from geometric considerations

that the solution must be that linear combination of û and β̂ which is orthogonal to β̂. Designating the solution
vector as ecrv1, we find

ecrvi
1 = [ûi − cos(θ)β̂i]/ sin(θ), (17)

where θ is the angle formed by the unit vectors û and β̂, constrained by the condition 0 < θ ≤ π/2 under our
assumptions. Indeed a little algebra shows that

tan(θ) = δβ/β̄, (18)

where β̄ and δβ respectively denote the mean and the standard deviation of the β’s, i.e., N−1
∑N
i=1βi and

[N−1
∑N
i=1(βi − β̄)

2
]
1
2
. Equation (18) clearly shows that the angle θ represents the degree of scatter among the

betas, vanishing when all betas are equal and increasing as they are made more unequal. Note that the condition

θ > 0 stipulated above excludes the (improbable) case of uniform betas. Note also that the condition e · β̂ = 0
in Eq. (16) is equivalent to the vanishing of the portfolio beta for ecrvi

1, in contrast to the same quantity for the
market-aligned portfolio which is found to be β̄/cos2(θ).

Thus far we have determined two eigenvectors, the market-aligned ecrvN , and the minimum-volatility, market-
orthogonal eigenvector ecrv1. The remaining N−2 market-orthogonal eigenvectors will of course have to be orthogonal
to these, which immediately implies that they will all be orthogonal to û. But orthogonality to û implies a vanishing
weight, thus implying that these portfolios require zero initial investment. Stated differently, these N − 2 portfolios
are critically leveraged, with the short-sold assets precisely balancing the purchased ones in each portfolio. Under
these circumstances, any volatility in portfolio return would imply an infinite variance for that principal portfolio
because of the vanishing initial investment. Note that the return-adjusted volatility for these portfolios, on the other
hand, need not (and in typical cases will not) diverge at all.

As stated earlier, the efficient frontier in the presence of a riskless asset has a simple allocation rule which requires
that each principal portfolio be included in inverse proportion to its variance. For the current case, this rule clearly
excludes the N − 2 portfolios described above from the efficient frontier, leaving the first two principal portfolios and
the riskless asset as the only constituents. Thus for the special case of constant residual variance, a knowledge of the
two distinguished principal portfolios determined above is all that is needed to specify the efficient frontier when a
riskless asset is present. For this reason, we will not continue with the explicit construction of the remaining N − 2
eigenvectors.

At this point we can determine the expected value and the variance of the two principal portfolios determined above
according to the definitions and formulae given in §2. Straightforward algebra leads to

RcrvN =

∑N
i=1β̂i(ᾱi + βiρ̄mkt)

N
1
2 cos(θ)

, (V crvN )
2

=
ᾱ2 + β · βρ̄2mkt

Ncos2(θ)
, (19)

for the market-aligned portfolio, and

Rcrv1 =
rav

sin2(θ)
− cot2(θ)RcrvN , (V crv1 )

2
=

ᾱ2

Nsin2(θ)
, (20)

for the market-orthogonal, minimum volatility principal portfolio. In order to facilitate comparison with the pertur-
bative results of §2 for the general single-index model, we also record here the return-adjusted volatilities of these
portfolios;

V̌ crvN =
(ᾱ2 + β · βρ̄2mkt)

1
2∑N

i=1β̂i(ᾱi + βiρ̄mkt)
, (21)
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V̌ crv1 =
[ᾱ2sin2(θ)]

1
2

N−
1
2 [rav − cos2(θ)RcrvN ]

. (22)

The results just derived demonstrate the powerful volatility reduction effect of diversification coupled with short
sales for the market-orthogonal portfolio ecrv1. To see this, let us assume a typical value for tan(θ) of the order of
unity [for reasonably large N ; cf. Eq. (18)]. We then find from the above results

limN→∞ V crvN = [
β · β

Ncos2(θ)
ρ̄2mkt]

1
2

, limN→∞ V crv1 = 0. (23)

Note that the quantity β ·β in general grows in proportion to N , and therefore that β ·β/Ncos2(θ) is typically of the
order of unity for large N . Thus the variance of the market-aligned portfolio will be of the order of ρ̄2mkt for large
N , as would be expected. The variance of the market-orthogonal portfolio, on the other hand, vanishes altogether in
proportion to N−1 in the same limit of large N . These conclusions echo our results in §2, Eq. (13) et seq.

Note that the vanishing of the market risk for the market-orthogonal portfolio, which is in addition to the vanishing
of the “diversifiable” (or specific) risk expected for large N (Elton and Gruber 1991), is a specific result of leveraging
coupled with hedging (or diversification). Similarly, the infinite volatility and expected return levels of the N − 2
remaining portfolios of this model underscore the dramatic levels of volatility as well as return that can be expected
of highly leveraged portfolios.

We are now in a position to determine the composition of the efficient frontier for the constant residual variance
case. As stated above, we find from the allocation rule of the efficient frontier that Xcrv

µ = 0 for 2 ≤ µ ≤ N − 1,
since the corresponding inverse variances Zcrvµ all vanish. The three components of the efficient frontier are the

riskless asset together with ecrv1 and ecrvN . Furthermore, the latter portfolio will be strongly disfavored relative to
the former for large N since its variance grows in proportion to N relative to that of the former; cf. Eq. (23) et seq.
Indeed for reasonably large N , the efficient frontier is essentially a combination of ecrv1 and the riskless asset;

Xcrv
0 →

Rcrv1 −R
Rcrv1 −R0

, Xcrv
1 →

R−R0

Rcrv1 −R0
, as N →∞, (24)

while

Xcrv
N →0, Veff = | R −R0

Rcrv1 −R0
|[ ᾱ2

Nsin2(θ)
]

1
2

→0 as N →∞. (25)

This last property, i.e., the vanishing of the efficient portfolio volatility (i.e., the market as well as the specific risk) in

proportion to N−
1
2 in the limit as N →∞, also holds for the general single-index model, as can be discerned from the

results of §2. As discussed earlier, this total vanishing of the portfolio volatility is a specific consequence of leveraging.
We close this section by summarizing the results established above.
Proposition 2. The principal portfolios of the constant variance single-index model consist of a market-aligned port-

folio ecrvN , a minimum-volatility, market-orthogonal portfolio ecrv1, and N −2 critically leveraged market-orthogonal
portfolios with infinite volatility and expected return, as given in Eqs. (17)-(23). Furthermore, as N → ∞, the effi-
cient frontier reduces to a combination of ecrv1 and the riskless asset with a vanishing total volatility, as given in Eqs.
(24)-(25).

4. CONCLUDING REMARKS

As we have emphasized throughout, principal portfolios are the natural instruments for analyzing the efficient
frontier when short sales are allowed. More generally, they are the natural instruments for any stock selection process
based on the mean-variance formulation. We have also analyzed the single-index model as well as the constant residual
variance version of it in considerable detail. Our treatment of the general single-index model for large asset sets has
revealed the bifurcation into market-aligned and market-orthogonal (or zero-beta) portfolios. This is an important
finding in view of the fact that for sufficiently large asset sets the market-aligned portfolio is all but excluded from the
efficient frontier thereby eliminating the component of volatility commonly referred to as market risk. The constant
residual variance version of the model, while admittedly oversimplified, brings out the above-mentioned bifurcation
as well as the elimination of the market risk in a clear and explicit manner.

We conclude by observing that the mean-variance description of risky asset prices whereby short-term price varia-
tions are taken to be random fluctuations has been a remarkably fruitful idea for describing the dynamics of financial
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markets, its well known limitations notwithstanding. We have attempted in this work to extend the utility of that
idea by providing a new analytical tool for its implementation.
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