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1. Introduction 

 

Time series analysis aims to reduce the effects of random variations in order to extract meaningful 

statistics from the data. Time series analysis takes into account the fact that data points taken over 

time may have an internal structure consisting of different systematic pattern components (trend, 

cycle and seasonality, Han, Kamber 2001) and of a random error component that should be 

accounted for. The trend and the cyclical component, usually referred to as trend-cycle, are estimated 

jointly. To estimate a seasonally-adjusted time series or one without seasonality, the most common 

tool is moving averages. 

The success of this tool can be explained on the one hand by its rather good price/performance ratio 

(e.g. a good smoothing for an application on many time series that is less expensive in practice), and 

on the other hand, by the success of software programs such as X11-ARIMA (Dagum 1988) or X12-

ARIMA (Findley et al. 1998), which largely use the Henderson smoother (1916). 

 

It is possible to build a symmetrical moving average series, with desirable characteristics in terms of 

trend saving, noise reduction, flexibility and/or non-phase effects that are well adapted to the goal of 

analysis. Different approaches can be used to estimate a trend-cycle component (Grun-Rehomme, 

Ladiray 1994, Gray, Thomson 1996, Guggemos et al. 2012). However, with symmetrical moving 

averages, the treatment of the endpoints remains an issue. A moving average of 2p+1 order, for 

example, does not allow smoothing of the p endpoints of the time series, or the p beginning points 

(although beginning points may be less important in a long data series because they are the oldest).  

 

We can mention the following techniques which are currently used to smooth endpoints 

(Bianconcini, Quenneville 2010, Proietti, Luati 2008): 

- The symmetric and asymmetric filters associated with the Henderson smoother. Following the 

tradition already established in the related literature, both symmetric and asymmetric filters are called 

Henderson filters. Henderson kernel filters of any length can be constructed, including infinite ones. 

Furthermore, the Henderson smoother represented as a second- or third-order kernel calculated for 

large spans can be used for trend instead of trend-cycle smoothing, like the classical Henderson 

(Dagum, Bianconcini, 2006). 

- Within the family of Henderson filters, we can distinguish the asymmetric Henderson smoothers 

developed by Musgrave (1964a and 1964b).  They are based on the minimization of the 15 mean 

squared revisions between the final estimates (obtained by application of the symmetric filter) and the 

preliminary estimates (obtained by application of an asymmetric filter) subject to the constraint that 

the sum of the weights is equal to one (Laniel 1985, Doherty 1992, Dagum, Bianconcini 2006). The 

same technique can be applied to the starting observations of a time-series.  
This technique is implemented in X11, for example (Doherty 2001, Ladiray, Quenneville 2001, 

Quenneville et al. 2003). However, while the Musgrave filter is optimal for revision (with knowledge 

of new data records) it does not use the Henderson optimization criteria. Moreover, when estimating 

the most recent points, we must rely on asymmetric filters, whose main drawback is that they induce 

phase shift effects. 

- Time series forecasting by the ARIMA model followed by use of the symmetrical moving average, 

as performed by X11-ARIMA (Dagum, 1982). The major innovation introduced by Dagum consists 

in extending the series with forecasts to lessen the use of X11‟s asymmetric filters. For this purpose, 

she proposed to measure the theoretical reduction in revisions.  

 

This paper analyzes the smoothing of endpoints of time series following the Henderson technique 

and proposes a new smoothing technique to treat endpoints. We use the same length for the 

asymmetric moving averages to keep the same level of smoothing. This principle is based on the 

Loess estimator proposed by Cleveland (1979) and further developed by Cleveland and Devlin 
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(1988), which is also known as locally-weighted polynomial regression. However, the Loess 

estimator approach (without moving averages) cannot be compared with the one proposed by Dagum 

and Bianconcini (2008, 2012), since they are completely different. The paper is organized as follows. 

The research question and Henderson moving averages are briefly discussed in section 2. Section 3 

presents a new approach based on the Epanechnikov kernel. In section 4, a comparison of the two 

methods is made using the French index of industrial production. Section 5 concludes the paper. 

 

 

 

2. Research issue and Henderson moving averages 

 

We consider a monthly seasonally-adjusted time series tx  (the technique is similar for quarterly time 

series) which is additive and can be decomposed into a trend-cycle component (denoted by ttc ) and a 

random error component t , called noise: 

                                                             ttt tcx                                                                (1) 

 

The random error component in the decomposition model is often presented as white noise with 

variance . 

 

2.1 Research issue 

 

The goal of this study is to estimate a globally smooth trend-cycle component that is assumed locally 

to follow a polynomial. There exist different approaches, such as local polynomial regression, 

graduation theory, and so on. Here we are interested in a kernel smoothing method (based on 

weighted moving averages).  

 

Let p and f be two non-negative integers. The value of the initial time series at time t is replaced by a 

weighted average (with t coefficients) of p “past” values of the series, the current value and f  

“future” values of the series. The quantity p+f+1 is called the moving average order. When p is equal 

to f, the moving average is said to be centered. If, in addition, we have tt    for every t, the 

centered moving average is said to be symmetric. 

The transformation of tx  using moving averages MA can be written as follows: 

                                         kt

f

p

kt

*

t xθxMAx 



 )(                                                                   (2) 

It is easy to show that for a moving average MA to conserve a polynomial of a certain degree d, it is 

necessary and sufficient that the coefficients t verify:  

                              



f

p

i

k
f

p

i 0i     d1,2,.....,k       and       1                                         (3) 

The returned coefficients, when applied to data, perform a polynomial least-squares fit within the 

filter window. The symmetrical moving averages have some good properties (without phase shift), 

but they are not convenient for estimation of the time series endpoints. 

 

2.2 Henderson moving averages 

 

Henderson moving averages are mostly used for time series smoothing. An estimate ttc  of the trend-

cycle must be a smooth curve. Let us denote the Dirac time series 0t

t  by: 
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The application of moving averages of order p+f+1 and coefficients  t  transforms it into the 

following time series: 


 




otherwise    0

t  tif    
)(

0t00 tt

tMA


  

It is sufficient to impose that the curve of the coefficients of moving averages is smooth. The Dirac 

time series is a base of the set of time series, since all series tx  can be written as 



Zt

t

ttt xx
0

0

0
 . 

Henderson‟s initial requirement is that the filter should reproduce a cubic polynomial trend. He 

suggested using, as criterion of smoothness, the quantity:  ( )3

i

i

i
2





  , where  represents the first-

order difference operator (Xt = Xt - Xt-1). The lower this quantity, the more flexible are the 

transformed series. The symmetric Henderson filter is an unbiased estimator for polynomials of 

degree 3.  

Henderson‟s weights ( t ) are solutions of the following optimization problem: 
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 
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t ttMin 0,0,1/)( 223 


                                     (4) 

As we are interested in monthly time series, we will consider a Henderson moving average of order 

13 (p+f+1=13) with p varying from 6 (centered average) to 12 (last known point). As we are 

interested only in the most recent values of the series, we assume that pf  . 

For asymmetric filters, we keep the same length of smoothing as for symmetric filters in order to 

maintain the same level of smoothness.  

 

Table 1: Value of coefficients of the Henderson filter according to moving average order  

 

T H-12-0 H-11-1 H-10-2 H-9-3 H-8-4 H-7-5 H-6-6 

-12 0.08514       

-11 0.14861 0.04644      

-10 0.10217 0.07662 0.01625     

-9 -0.05239 0.04257 0.02167 -0.00542    

-8 -0.23577 -0.04912 0 -0.01625 -0.01858   

-7 -0.34294 -0.14736 -0.03930 -0.02554 -0.03715 -0.02322  

-6 -0.30007 -0.18933 -0.06877 -0.02292 -0.03406 -0.04102 -0.01935 

-5 -0.10288 -0.13503 -0.06001 0 0 -0.02554 -0.02786 

-4 0.17683 0.01072 -0 0.04501 0.05894 0.02947 -0 

-3 0.41914 0.19647 0.10002 0.10502 0.12574 0.10806 0.06549 

-2 0.51083(*) 0.34383 0.20630 0.16504 0.18004 0.18219 0.14736 

-1 0.40867 0.38313 0.27506 0.20630 0.19647 0.22220 0.21434 

0 0.18266 0.29334 0.27245 0.21285 0.20576 0.22505 0.24006 

1  0.12771 0.19505 0.17879 0.15718 0.17683 0.21434 

2   0.08127 0.11378 0.10217 0.10806 0.14736 

3    0.04334 0.04954 0.04257 0.06549 

4     0.01393 0.00232 0 

5      -0.00697 -0.02786 

6       -0.01935 

(*) In this table, bold font indicates the highest value in each column (coefficients of moving 

average) 
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For moving averages H-6-6 to H-9-3, we can see that the coefficient of the current value is larger 

than the other coefficients. This corresponds to the idea that the current value “dominates” the 

estimated value of the trend at the current date. 

For the last three orders (i.e. from 10 to 12), the largest value of the coefficients remains around date 

t-2; this is not satisfactory because it indicates that the last observed values weigh less than those at t-

2. Such an observation was already formulated by Dagum and Bianconcini (2008, 2012). Also note 

that the Henderson moving average, which only keeps the straight lines, has the same disadvantage. 

 

3. Kernels and moving averages: a new approach 

 

The kernel method is generally used to estimate the density of a probability distribution of a sample, 

taking into account the local character of this density. 

Briefly, let nxx ...,,1  be a random sample drawn from an unknown continuous distribution with 

density function f.  The kernel density estimator of f is: 



n

i
n

xx
K

n
xf

1

)(
1

)(ˆ


, where K(.) is a 

kernel, an integrated function, positive (but not necessary positive when we are fitting a cubic 

polynomial locally) and 0  is a smoothing parameter called the bandwidth. K is a probability 

density:  1
R

K  with )0()( KxKMax
x

  

For example:   )()( 2/1,2/1 xIxK  where I is the indicator function, or )
2

exp(
2

1
)(

2x
xK 


 

(Gaussian kernel).  

We can show (Weyman, Wright, 1983) that in the class of even, positive kernels 

verifying 1)(2 
R

dxxKx , the minimum of the Mean Integrated Square Error (MISE): 

  dxxfxfEMin n

R
K

2

)(ˆ)(  , is reached for   )()
5

1(
54

3
)(

5,5

2

tI
t

tK


 . The Epanechnikov kernel 

is defined as   )()1(
4

3
)( 1,1

2 tIttKe  . Hereafter we use the term “Epanechnikov kernel” for )(tK , 

because we are dealing with probability densities. 

 

The kernel method can also be used to define the coefficients i of the moving averages, since we can 

write 





f

p

t

tK

tK

)/(

)/(




 , where   is the bandwidth parameter chosen in order to ensure a filter length 

equal to p+f+1 . Intuitively, one wants to choose   as small as the data allow; however, there is 

always a trade-off between the bias of the estimator and its variance. 

This moving average remains constant because



f

p

t 1 . For example, 

for  ppIKandfp ,,1  , we obtain
12

1




p
t . 

Let us suppose that we wish to smooth a time series tx , decomposed into a trend-cycle (noted ttc ) and 

a residual component t  (white noise): 

ttt tcx   
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It can be noted that 0  (weight of the current date for the smoothing) will be always larger than the 

weights attributed to the previous or later dates. Moreover: 

 For a symmetric moving average of order 2p+1, it is necessary to choose 
5

p
 to remain 

within an interval  pp,  , and )1(
14

3
2

2

2 p

t

p

p
t 


 . 

 For asymmetric moving averages, with pf 0 , it is necessary to choose
5

p
 , for 

example: 
5

p
  and in this case

)1(

)1(

2

2

2

2

p

S
fp

p

t

t





 , where 



f

p

tS 2

2
. 

Table 2: Coefficients of moving averages according to the Epanechnikov kernel  

 

t N-12-0 N-11-1 N-10-2 N-9-3 N-8-4 N-7-5 N-6-6 

-12 0       

-11 0.018821 0      

-10 0.036006 0.019700 0     

-9 0.051555 0.037523 0.020879 0    

-8 0.065466 0.053471 0.039560 0.022546 0   

-7 0.077741 0.067542 0.056044 0.042440 0.025084 0  

-6 0.088380 0.079737 0.070330 0.059681 0.046823 0.029412 0 

-5 0.097381 0.090056 0.082418 0.074271 0.065217 0.054299 0.038461 

-4 0.104746 0.098499 0.092308 0.086210 0.080267 0.074661 0.069930 

-3 0.110475 0.105065 0.1 0.095490 0.091973 0.090498 0.094406 

-2 0.114566 0.10975 0.105494 0.102122 0.100334 0.101810 0.111888 

-1 0.117021 0.112570 0.108791 0.10610 0.105351 0.108597 0.122377 

0 0.117840(*) 0.113508 0.109890 0.107427 0.107023 0.110859 0.125874 

1  0.112570 0.108791 0.106100 0.105351 0.108597 0.122377 

2   0.105494 0.102122 0.100334 0.101810 0.111888 

3    0.095491 0.091973 0.090498 0.094406 

4     0.080267 0.074661 0.069930 

5      0.054299 0.038461 

6       0 

(*) In this table, bold font indicates the highest value in each column (coefficients of a moving 

average) 

 

The main advantage of this kernel approach is that the current value has a larger weight, while the 

weights of past and future values decrease as we move away from the present value. This property 

also remains valid for asymmetric moving averages. The largest weight at the current date permits to 

show the most recent variations. 

The noise is transformed by the moving average into a sequence of random variables of constant 

variance: 


f

p

t )( 22  . Reducing the irregular component, and therefore its variance, amounts to 

reducing the quantity 


f

p

t

2 . The output signal is assumed to be „as close as possible‟ to the input 

signal when noise components are removed; that is why we will call this criterion the „fidelity‟ 

criterion. For this moving average, we obtain around 90% noise reductions (variance) for each order. 
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Furthermore, it preserves constants, but not straight lines and parabolas. 

 

In this part, we look for the moving average with coefficient t  that is closest to the results of the 

kernel approach and which keeps parabolas. 

Let tx  be the coefficients of this kernel, with 



f

p

tx 1 . It is necessary to solve the following 

optimization problem: 
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According to the Kuhn and Tucker conditions for ordinary convex programming (Rockafellar, 1970, 

section 28), we obtain: 
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Table 3: Coefficients of moving averages according to the Epanechnikov kernel fitting a parabola 

 

t MM-12-0 MM-11-1 MM-10-2 MM-9-3 MM-8-4 MM-7-5 MM-6-6 

-12 0.120879       

-11 0.032967 0.032967      

-10 -0.032967 0.000000 -0.032967     

-9 -0.076923 -0.021978 -0.021978 -0.076923    

-8 -0.098901 -0.032967 -0.008991 -0.032967 -0.098901   

-7 -0.098901 -0.032967 0.005994 0.005994 -0.032967 -0.098901  

-6 -0.076923 -0.021978 0.022977 0.039960 0.022977 -0.021978 -0.07692 

-5 -0.032967 0.000000 0.041958 0.068931 0.068931 0.041958 0.00000 

-4 0.032967 0.032967 0.062937 0.092907 0.104895 0.092907 0.06294 

-3 0.120879 0.076923 0.085914 0.111888 0.130869 0.130869 0.11189 

-2 0.230769 0.131868 0.110889 0.125874 0.146853 0.155844 0.14685 

-1 0.362637 0.197802 0.137862 0.134865 0.152847 0.166832 0.16783 

0 0.516484(*) 0.274725 0.166833 0.138861 0.148851 0.167833 0.17483 

1  0.362637 0.197802 0.137862 0.134865 0.152847 0.16783 

2   0.230769 0.131868 0.110889 0.125874 0.14685 

3    0.120879 0.076923 0.085914 0.11189 

4     0.032967 0.032967 0.06294 

5      -0.032967 0.00000 

6       -0.07692 

(*) In this table, bold font indicates the highest value in each column (coefficients of a moving 

average) 

 

With this moving average, the noise reduction is around 85% for each order, except for MM-12-0 

(only 50%) and MM-11-1 (73%). 

This approach preserves parabolas but has the same disadvantage as the Henderson moving average 

(the greatest value of the coefficients does not correspond to the current time). The constraints are too 

strong and as a result the coefficients do not depend on the reference moving average with respect to 

which we minimize the distance. 

 

When the points at both ends of a time series have to be estimated with asymmetric moving averages, 

this filter should be rather short and have a gain )(G  close to one for small frequency   (for 

example, between 0 and 6/ ) and near to zero for higher frequencies. The gain function )(G  

describes how much the amplitude of the time series components is changed by the filtering. In the 

annex we present the gain function for some asymmetric moving averages (table 2 and 3); it has the 

same form for the other asymmetric filters. We have two groups: from 6-6 to 9-3 and from 10-2 to 

12-0. In each group, we obtain roughly the same curve shape. It is apparent that the asymmetric filter 

does not amplify the signal and converges faster to the final one. There exists a trade-off between the 

amplitude and phase shift effects induced by an asymmetric filter. 

We now compare the Henderson and kernel methods using the French index of production. 

 

 

4. Application 

The index of industrial production (IIP) is a statistical aggregate, which measures the variations in 

quantities produced by the industrial sector (INSEE source, graph 1). This is a Laspeyres index 

(constant weighting) calculated from monthly industrial survey data, adjusted for seasonality and 

trading days. We study the IIP from January 2007 to September 2011, with 2005 as the base year 

(INSEE source). We also present the production index for construction (graph 2) having the same 

characteristics as IPP (source, dates, methodology). 
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Three approaches (Henderson and two kernel-based methods) are examined. They give similar 

results at the center of the series (see the graph below). However, it can be seen that the 

Epanechnikov kernel estimation plots the end points better than the Henderson one (which does not 

catch the turning points at the end of the series). This suggests that the kernel approach is to be 

preferred. 

 

Graph 1: Comparison of the methods of smoothing on the IIP (seasonally and trading days adjusted) 

series of Manufacturing Industry, Mining & Other Extractive Industries (NAF rev.2) 
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Graph 2: Comparison of methods of smoothing on the index of production in construction 

(seasonally and trading days adjusted)  
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5. Conclusions 

 

For the kernel approaches, two elements remain constant: 

- In the method which keeps the parabolas, a shift takes place between asymmetric moving averages 

of order 9-3 and those of order 10-2, when we move from a concave curve to a convex curve. A 

concave curve attributes a dominant weight coefficient to the current value that seems to be 

reasonable. A convex curve attributes the largest weight to the last observed value, which is less 

reasonable. 

- With the kernel method which keeps only constants, the largest weight is always the weight of the 

current value and the weights decrease as we move away from the current value. This suggests that 

for the last values, it may be better to take moving averages which keep only constants (even the 

straight lines); otherwise the last observed values are over-weighted and strongly influence the trend. 

This is in contrast to the definition of a trend, which describes the long-term evolution of the series 

and must be relatively robust. 

There are many methods for time series decomposition. The statistician-economist must choose the 

one that seems to be the best smoothing technique according to his/her experience. The present paper 

contributes to the choice issue by examining the properties of different moving average methods. A 

convex combination of these moving averages can also be efficient. 
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Appendix: Gain function of some filters 

 

Moving average according to the Epanechnikov kernel (table 2) 
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Moving average according to the Epanechnikov kernel, parabolas (table 3) 
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