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1. Introduction 
 

Value-at-Risk (VaR) has become the standard measure for financial market risk since 

it was sanctioned by the Basle Committee. However, with the huge losses suffered in last 

decade by many financial institutions, VaR has been often criticized. These critics have two 

main causes: i) VaR is not a coherent risk measure, since it does not satisfy the subadditivity 

condition; and ii) VaR ignores the loss (of) magnitude beyond the quantile point of interest. 

As an alternative risk measure which can remedy these drawbacks, Artzner et al. 

(1999) introduced the Expected Shortfall (ES). In short, VaR describes the loss that can occur 

over a given period under a certain confidence interval, while ES is the expected loss 

conditional on the loss being above VaR. Since ES introduction, empirical literature has been 

concerned with new forms for ES estimation. Some recent methods for estimation are 

Cornish-Fisher approximation (Giamouridis, 2006), nonparametric econometric tools (Chen, 

2008; Taylor, 2008), the use of asymmetric t and exponential power distributions (Zhu and 

Galbraith, 2011), the integral of the conditional quantile function (Leorato et al., 2012), and 

the weighted Nadaraya–Watson estimation (Kato, 2012). 

One can note that these new methods exhibit a trend for flexible and robust estimation 

techniques, which can lead with the financial returns stylized facts, such as negative 

asymmetric leptokurtic behavior and volatility clusters. In this sense, this note has as 

objective presenting ES estimation based on Pair Copula Constructions (PCC). A copula 

is a function that links univariate marginal to their multivariate distribution by splitting them, 

specifying joint distribution with full flexibility. Cherubini et al. (2012) is an excellent review 

for copula methods in finance. The great part of the research in copulas is still limited to the 

bivariate case. So, constructing higher dimensional copulas is the natural next step, being 

very possible that the most promising of these is the PCC.  

Originally proposed by Joe (1996), PCC is based on a decomposition of a multivariate 

density into unconditional and conditional bivariate copula densities. Applications to 

financial data have shown that these models outperform other multivariate copula models in 

predicting log-returns of equity portfolios (Aas and Berg, 2009; Chollete et al., 2009; Fischer 

et al., 2009; Aas and Berg, 2011; Czado et al., 2012). 

 

2. Expected Shortfall estimation through Pair Copula Constructions 

 

Consider that financial log-returns have a marginal specification based on 

expectation, dispersion and random component, conform formulation (1).  

                  .                                                                                                      (1) 

Where, for an asset i in period t,    is the log-return;    is the conditional mean;    is 

the conditional standard deviation;    represents the innovations white noise series, which can 

assume many probability distributions functions.  

After isolating marginal behavior, i.e., fitting the expectation and dispersion 

components, it is possible to conduct a joint analysis free of this marginal influence. To that, 

one should transform residuals      into pseudo-observations    [   ] through the ranks as 

                           . This procedure is needed because copula functions 

domain and image definition. With these pseudo-observations one can estimate a PCC for 

log-returns joint specification. The two main types of PCC that have been proposed in the 

literature are the C (canonical)-vines and D-vines. Here we focus on the D-vine estimation, 

which has the density as formulation (2).  
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In (2),         are the pseudo-observations;   is the density function;        is a 

bivariate copula density and the conditional distribution functions are computed as in (3). 

        
           

{ (      )  (      )}

  (      )
.                                                                      (3) 

In (3),           
 is the dependency structure of    and    bivariate conditional 

distribution conditioned on    , where the vector    is the vector u excluding the 

component   .  Concerning to parameters estimation, Aas et al. (2009) propose a Maximum 

Likelihood (ML) estimation procedure which follows a stepwise approach.  

With marginal and joint parameters already estimated, we present an algorithm for ES 

computation for desired out-sample period. This procedure is an extension of that proposed 

by Aas and Berg (2011) for VaR. This VaR calculation was successfully employed on 

literature in some very recent papers (see, for instance, Righi and Ceretta, 2012). Thus, the 

PCC based ES algorithm is as following. For each significance p and day k at out-sample 

period: 

 

1. Compute forecasts of the conditional mean        and standard deviation 

       of each asset through marginal models;  

2. Simulate N samples      for each asset i through estimated PCC;  

3. Convert each set of simulation      to      samples through the inversion of 

their marginal density probability as        
       ); 

4. For each asset i, determine the daily log-return N simulations conform 

marginal specification                           ; 

5. Compute the N portfolio returns as     , where                is the 

weights vector and                                    is the log-returns 

vector of assets 1,2,…,n; 

6. Compute the       
 

 as the portfolio simulated returns p-th quantile, i.e., 

      
         

           , where G is the empirical distribution 

function of     ; 

7. Compute the      
 

 as the mean of the portfolio simulated returns below 

p-th quantile (      
 

 , i.e.,      
 

 
 

  
∑                  

 
 
   , where 1 

is the indicator function; 

 

3. Empirical Illustration 
  

We used daily log-returns of the Morgan Stanley Capital International (MSCI) market 

indices of U.S., Germany, Brazil and Hong Kong from June 2010 to June 2012, totalizing 

561 observations. These indices were chosen to avoid non-synchronism issues. The period 

correspond to the Eurozone crisis (Righi and Ceretta, 2011), becoming a relevant scenario for 

risk management tools capacity test. The last 100 observations were separated for posterior 

backtesting.  

Initially, we estimated marginal ARMA (m,n) - GARCH (p,q) models with student’s t 

innovations. Innovations distribution and lags were chosen through AIC. After, we 

transformed marginal residuals into pseudo-observations, and we estimated a PCC, 

considering the absolute Kendall’s Tau as entrance order criterion. Results for these marginal 

and joint estimations are presented on Table 1, despite their analysis is out of scope. 

However, it is valid mentioning that ARMA-GARCH models presented a proper fit, as 

pointed by parameter significance and Q statistics. The same is true for PCC, all relationships 

presented significant parameters. 
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Table 1 – ARMA-GARCH e PCC estimation results for the MSCI indices log-returns at in-

sample period. 

Marginal     

Market EUA Germany Brazil Hong Kong 

Mean Constant 0.0011 0.0011 0.0007 0.0008 

 (0.0014) (0.1173) (0.3338) (0.1509) 

AR 1 - -0.8069 - 0.6390 

  (0.0000)  (0.0042) 

MA 1 - 0.8259 - -0.5782 

  (0.0000)  (0.0132) 

Variance Constant 0.0000 0.0000 0.0000 0.0000 

 (0.1129) (0.0000) (0.1681) (0.0987) 

ARCH 1 0.1529 0.0855 0.0410 0.1148 

 (0.0053) (0.0635) (0.0397) (0.0521) 

GARCH 1 0.8461 0.8980 0.9379 0.8545 

 (0.0000) (0.0000) (0.0000) (0.0000) 

Shape 4.0781 11.5313 8.5172 5.8224 

 (0.0000) (0.0537) (0.0063) (0.0021) 

Q (10) linear 3.9041 4.6391 10.9502 7.2061 

 (0.8687) (0.7954) (0.2046) (0.5145) 

Q (10) squared 7.1913 8.3755 8.2166 10.9343 

 (0.5161) (0.3977) (0.4061) (0.2362) 

Joint     

Relationships Copula Parameter 1 Parameter 2  

EUA | Germany BB7 1.8674 1.0422  

  (0.0000) (0.0000)  

Germany | Brazil BB7 1.6351 1.1515  

  (0.0000) (0.0000)  

Brazil | Hong Kong BB7 1.1962 0.3572  

  (0.0000) (0.0000)  

EUA | Brazil Normal 0.4529 -  

  (0.0000)   

Germany | Hong Kong Frank 1.0137 -  

  (0.0000)   

EUA | Hong Kong Student -0.0599 6.8181  

  (0.8720) (0.0028)  

 

After estimating marginal and joint models, we performed the algorithm exposed on 

section 2, obtaining VaR and ES predictions for out-sample period, at 5% and 1% 

significance levels. We considered an equal-weighted portfolio, for question of simplicity. 

We backtested these predictions with tests proposed by Kupiec (1995) and Christoffersen 

(1998) for Var, and McNeil and Frey (2000) for ES. Further, for comparison matter, we also 

realized predictions using a ARMA (1,1) – GARCH (1,1) and a Dynamic Conditional 

Correlation (DCC) models. For ARMA – GARCH model we constructed a portfolio series as 

the MSCI indices mean, while for DCC we constructed mean and variance portfolio series 

pondering conditional means and dynamic covariance matrix by weights vector. Thus, for 

this two approaches, we computed VaR and ES in a parametric way, conform can be found in 

Christoffersen (2012), for example. Table 2 presents the backtesting results. 
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Table 2 – VaR and ES backtesting results for the MSCI indices log-returns at out-sample 

period. 

Variable PCC GARCH DCC 

5% quantile    

Expected Violations 5 5 5 

Occurred Violations 6 0 0 

Kupiec test p-value 0.6559 0.0014 0.0014 

Christoffersen test p-value 0.6147 0.0059 0.0059 

McNeil and Frey test p-value 0.6772 - - 

1% quantile    

Expected Violations 1 1 1 

Occurred Violations 1 0 0 

Kupiec test p-value 1.0000 0.1563 0.1562 

Christoffersen test p-value 0.9898 0.3660 0.3660 

McNeil and Frey test p-value 0.4916 - - 

 

Results in Table 2 indicate that both VaR and ES predictions made with PCC 

approach were correct, neither test rejected null hypothesis. The predictions effected with 

GARCH and DCC models, rejected the null hypothesis for VaR tests at 5% level, and do not 

for 1% level. However, there was a risk super estimation, because there is not any violation. 

Thus, the ES backtest would have no sense. These results indicate an advantage for PCC 

approach, furthermore, what is reinforced considering that this out-sample is a crisis period. 

 

4. Conclusion 

 

In this note we presented an algorithm for portfolio ES estimation through PCC. The 

advantages of this method are the flexibility in what dependence structure is determined, as 

well as the simplicity of simulation procedures. We illustrate our approach with a brief 

empirical application with international market indices in a crisis period. The results of this 

illustration point towards more correct predictions of our approach, while other widespread 

techniques (GARCH and DCC) did not have the same performance. 
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