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1. Main results

We use notations and results from Francq and Zakoian (2012). Let us consider the GARCH(1, 1)
model

e = o (0)uy
07 (0) = w+ ae; , + foi(0)

(1)

with # = (w a ) in a compact parameter set © C (0, +00)3. The process (u;) is a sequence
of i.i.d. variables such that E(u;) = 0, E(u?) = 1 and E(u}) = k, € (1,+00). The true
parameter, denoted by 6y = (wy ag Bo)’, belongs to the interior of ©. The process (1) is
covariance stationary if and only if oy + By < 1. This is a sufficient but non necessary
condition for strict stationarity. Nelson (1990) proved that ¢ < oo almost surely and
{e:, 02} strictly stationary if and only if vy = E[ln(agu? + By)] < 0. For simplicity, we treat
covariance stationary GARCH even if many results can be suitable extended to the general
case. The quasi-maximum likelihood estimator (in short, QMLE) 6 = (& ar fr) is any
measurable solution of

T
—~ . 1
Op = argming g T Zﬁt(Q) (2)
t=1
where )
€
0,(0) = —+— + Ino?(6).
t( ) O_t2<0) t( )

For any asymptotically stationary process (X)>o, let

T—+o00

T
) 1
Eow(X) = lim = X
t=1
provided this limit exists. For instance, for the process (¢;), we have

Es(€) = Ex(0}) = wo(l — a0 — fo) (3)

when g + fy < 1. In the stationary case (7 < 0), it is well-known the consistency and the
asymptotic normality of the QMLE 61 as follows.

Theorem 1. Suppose vy < 0. For © C (0,+00)? such that for every € ©, 8 < 1, then

TEIEOO O = 0Oy (a.s.)

and

VT(0r —6)) — N (0, (k, — 1))

T—+o0
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where

B dlno? dlno?
I_Eoo( 20 lo—0, 50 lo=0,

18 a positive definite constant symmetric matrix.

We prove the following results:
Theorem 2. Under the assumptions of Theorem 1, the asymptotic score matrix is given by

0%(:(0) _
Boo (aeae o= 90) =L

Theorem 3. If 5y =0 and ag < 1, then T has the form

4kua873a0+1 172kuagfkua0
T — wg(l—ao)gl—kuag) wo(l—ap)(1—kuad)
1-2ky o —kuao ku(140a0)
wo(l—ap)(1—kuad) (1—a0)(1—kuad)

This provides an explicit form of the asymptotic variance matrix of the QML estimators
(Wr, ar) for an ARCH(1):

. (5 )= kuwi (1 —ad) wo(1 — ag)(2k,a2 + kyap — 1)
VAT =\ wo(1 = ) (2kua + kyao — 1) (1 — ao)(4kuad — 30+ 1) )

In Section 4 we compute the asymptotic score matrix Z for the general GARCH(1,1). This
result together with Theorem 1 provides an explicit form for the asymptotic variance matrix

of the QMLE of GARCH(1,1).

2. Consistency and Asymptotic Normality
To make the reading self-contained, we give a proof of Theorem 1. The FOC is given by

12T: 1 aatl B €2 8;%2| Ly
R

t=1

hence
1 i e |0 0,?| 0
= ot 9T) R

Taking the 1st Taylor expansions around 6, of [Jf(é\T)]* and alngt lg—g, and using € =
oi (fo)ui, we get

~ 1« dlno?

LB 00) + 0,(1) =~ 31— ) P00, (@)
t=1
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where .
1 9?In o? 8lna dlno?
Ir = — 1- : : :
T T;{( W) e 0=00 + lo=00 =57 lo= 90}
then dlno? Olno?
, no no
1= lm Ir=Ex ( 90 "= o5 |":"°)
as Ey(u?) = 1 and u? is independent of 02(y) (and its In derivatives). Since Z < oo

by assumption, taking the limit for 7" — +o0 in (4) gives the consistency of §T. For the
asymptotic variance of 67, we have

dlno?
a0

~ 1
varoowT):IlEoo((l—uff omsy L, )z — (k- 1)T

as Fo((1 —u?)?) =k, — 1. Theorem 2 says that fr is a minimizer of the objective function
for T sufficiently large. In fact, we have

_262gt - li [0 (QT)A 2¢?] D02 . do -
0000 T T~ [o2(67)? 00 T 00 T

1§~ [obln) = ] o2t

T [ob(6r)2 0000 "7

Taking the 1st Taylor expansion of af(éT) around 6y and using €2 = oZ(6p)u? gives
T

2&
Z 9000’ ‘9 GT =

ii [(1 = 2u?)o?(0y) + 8952|9:90(§T —0o)] 81naf| R (91nat2’ )

T2 0 o9 i o 0t
. 1 T (1 —ud)o?(6y) + a932|9:90(5T — )] 0?02 o

TS [03(0r))? 0808~

Taking the limit for 7" — 400 and using the consistency of §T, we get

0%,(0 dlno? dlno?
Oo ( 303(9’) |9:90> =—Ew [(1 - 2uy) a0 = lo=0, 90 “lo—0,

= —E(1-2u}) IT=1.
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3. Asymptotic Variance of the QMLE for ARCH(1)

Let us consider model (1) with § = 0. Since

o2(0) =w+aer | =w(l +aw e ),

we have

Ino2(0) =lnw+In(l +aw e ) ~Inw+aw e,

by using the 1st Taylor expansion of In(1 4 z) around zero. The first derivatives are given
by

2 2
811162 (0) S 81naaoi (0) _le
So we get
4 dln 0,52(9)| _ (wo_l - aowo_Qef_l)
tT T ag 10=0 wile, :
Then
T = E(AA)

_ (@ +040“)041*7 (et 1)—2a0w03E00(e§_1) WO_QE (ef 1) — aowo_?’Eoo(e?_l)

a ( wy *Eoo(€-1) — aowy *Eoo(€1) wy *Eoo(€f-1) )
Now Theorem 3 follows by using the formulae (see Rossi (2012), p.22):

kuw2 (1 + ap)
(1—ap)(1 — k,ad)

Eoo(€) = wo(l = ag) ™" Exo(e) =

Here we report the calculation of the last formula:

Eoo(ﬁf) = (Uf(eo)uf) = kuEoo (03(90))
= ky (Wo + aoE (et 1) + 2wocn B (Et 1)
— ka0 Buoled) + k(1 + a0)(1 = a0) .

4. Asymptotic Score Matrix for GARCH(1,1)
For model (1) we have
of(0) = (1= BL)'w+a(l — BL) e,

:wﬂ—ﬁ)[1+a1— E:ﬁqlJ
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hence

Ino?(6) = Infw(l — )]+ In[1 + a(l — B)w™ ZﬁZEt i-1]

1=0
~Infw(l = B)""+a(l - Bw” Zﬁlﬁt i—1
=0

by using the 1st Taylor expansion of In(1 + z) around zero. The first derivatives of In o?(0)
are given by

dlno?(6)

o = (=BT —a(l = B ggﬁqzl
dlno?(6) :
a—a: Zﬁ €—i—1
2
al%ﬁt(g):(l_ - —CY(U Zﬁletzl—i_a Zzﬁz 167&11

Then we have Z = E (AtA ), where A; = Mb 9,- To compute Z we need the moments
of €. Recall that Ex(}) is given by (3). Now we determine E(¢;) and E(efe7,,) for any
k> 1:

Euo(€)) = Ens(0(80)u;) = kuBoo(0/ (69))
Eoo(af(Ho)) —w0+a0E (et 1)+5§E (Ut 1(90>>
+ 2000 Eno (€_1) + 2wo B0 Eoo(07_1(00)) + 20080 Eo (€7_107_1(00))

= UL QL) 4 2 () + (5 + 20080) B (00)

1 —ap—Po
hence L 2<1 o)
"o + o +
Eo(ef) = == C =+ k0B (€y) + (B3 + 20080) Eo(€f_y)
1 —op—Bo
that is
kyw?(1
Beolel) = woll + a0+ fo) 5)

(1= a0 — Bo)(1 — kuag — 20080 — 53)
Set &, = {€;, €1, ... }. By the Law of Iterated Expectations, for any k& > 1, we get
v(k) = Ex (E?Ef—i-k) Eoo(Eoo (Et€t+k|q)t+k 1)) = Ewol(e 2Eoo(€?+k|¢)t+k—1))
= E(€; ;B (Ut+k(90)’q)t+k 1)) = B (€t Ut+k<90>)

= WoBuso (€2) + apEno (€t€t+k 1) + BoEs (Etat-i-k 1(00))
=wg(1 —ag— Bo) " + (o + Bo)v(k — 1).
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By iteration, we obtain

v(k)Zwé(l—ao—ﬁo IZ ap + Bo)" —wg(l—ozo—ﬁo)_2. (6)
=0

To determine Z, we now use (3), (5) and (6) and these relations:

Z/Boet i-1) ZﬂéEOO(Ef—i—l)

Zﬂoet i1) Zﬁng (i +2258+JE i€ —j— 1)

1<J

(Z'LBZ 16? i—1 ) Z'LB(Z) lE (Et 1— 1)
i=1 i=1

i— 2 1 3
(Z i 15? i 1) —Z 5 o (61& i—1 +2ZUﬁ I (E?fiqefqu)
=1 =1 1<J
Zjﬁlﬂ 16? i—1 Et —j— 1) = Ziﬂgi_lEoo(ef—i—l)+Zjﬁé+j_1Eoo(E?—i—1€?—j—1)-

i=1 i#£]

Finally we need the sums of these series. For 0 < x < 1, we have:

= 1 x = 1
— i = i = ——
; -z ; (1—2)2(1+x) ; (1 —x)?

o0 2
c2i-1_ v i1 _ 20" +x+1
;Zx (1 — 22)? ;]x (1—2)3(1+x)?
1+x ? + 2%+ 2
2,.2(i—1) _ i+j—2 _ .
ZZ —x2)3 ;mx (1—2)*(1+x)3

Putting together the above formulae gives the matrix Z.
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