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1. Introduction

On the space of transferable utility cooperative games, several solution concepts
have been motivated by the idea of egalitarianism. One of the best known is the
weak constrained egalitarian solution (WCES for short), introduced by Dutta
and Ray (1989). This solution is defined under the assumption that agents believe in
egalitarianism as a social value, but their individual preferences dictate selfish behavior.
On the domain of convex games, the WCES has many desirable properties and it has
been axiomatized by different authors (see Dutta, 1990; Klijn et al., 2000; Hougaard
et al., 2001; Arin et al., 2003). Nevertheless, existence is only guaranteed for the class
of convex games. In order to widen the potential class of applications, Dutta and Ray
(1991) introduced the strong constrained egalitarian solution (SCES for short),
a parallel concept that exists for a large class of games. However, there is no a proper
characterization result for the SCES. Thus, it seems a worthwhile exercise to provide
an axiomatic characterization for this solution concept. With this objective in mind,
we begin introducing some notation and terminology. In Section 3 we present the
axiomatic result.

2. Notation and terminology

The set of natural numbers N denotes the universe of potential players. By N ⊂ N
we denote a finite set of players, in general N = {1, . . . , n}. A transferable utility
coalitional game (a game) is a pair (N, v) where v : 2N −→ R is the characteristic
function with v(∅) = 0 and 2N denotes the set of all subsets (coalitions) of N . Here we
only consider games with |N | ≥ 2. Let Γ denote the set of all games. We use S ⊂ T
to indicate strict inclusion, that is S ⊆ T but S 6= T . By |S| we denote the cardinality
of the coalition S ⊆ N . A subgame of (N, v) is a game (T, vT ) where ∅ 6= T ⊂ N and
vT (S) = v(S) for all S ⊆ T . The subgame (T, vT ) will also be denoted by (T, v).

The set of feasible payoff vectors of a game (N, v) is defined by X∗(N, v) :=
{x ∈ RN |x(N) ≤ v(N)}. A solution on a class of games Γ′ ⊆ Γ, is a mapping σ
which associates with each game (N, v) ∈ Γ′ a subset σ(N, v) of X∗(N, v). Notice
that σ(N, v) is allowed to be empty. The pre-imputation set of a game (N, v) is
defined by X(N, v) := {x ∈ RN |x(N) = v(N)}, and the set of imputations by
I(N, v) := {x ∈ X(N, v) |x(i) ≥ v({i}), for all i ∈ N}. The core of (N, v) is defined
by C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. A game (N, v) is convex
(Shapley, 1971) if, for every S, T ⊆ N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). We denote
by Γvex the class of all convex games. A game (N, v) is weakly superadditive if for
all partition, {S1, . . . , Sm} of N , v(S1) + · · · + v(Sm) ≤ v(N). We denote by Γws the
class of all weak superadditive games. Notice that Γvex ⊆ Γws.

Let RN stand for the space of real-valued vectors indexed by N , x = (xi)i∈N , and for
all S ⊆ N , x(S) =

∑
i∈S xi, with the convention x(∅) = 0. For each x ∈ RN and T ⊆ N ,

xT denotes the restriction of x to T : xT = (xi)i∈T ∈ RT . Given two vectors x, y ∈ RN ,
x ≥ y if xi ≥ yi for all i ∈ N . We say that x > y if x ≥ y and for some j ∈ N , xj > yj.
Moreover, x� y if xi > yi for all i ∈ N . For any x ∈ RN , denote by x̂ = (x̂1, · · · , x̂n)
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the vector obtained from x by rearranging its coordinates in a non-decreasing order,
that is, x̂1 ≤ x̂2 ≤ . . . ≤ x̂n. For any two vectors y, x ∈ RN with y(N) = x(N), we

say that y Lorenz dominates x, denoted by y �L x, if
∑k

j=1 ŷj ≥
∑k

j=1 x̂j, for all

k ∈ {1, . . . , |N |}, with at least one strict inequality. Given a coalition ∅ 6= S ⊆ N
and a set A ⊆ RS, EA denotes the set of allocations that are Lorenz undominated
within A. That is, EA := {x ∈ A | there is no y ∈ A such that y �L x}. Given a
game (N, v), the strong Lorenz core (Dutta and Ray, 1989) is defined in a recursive
way as follows: the strong Lorenz core of a singleton coalition is L∗({i}, v) = {v({i})}.
Now suppose that the strong Lorenz core for all coalitions of cardinality k or less have
been defined, where 1 < k < |N |. The strong Lorenz core of a coalition S ⊂ N of
size (k + 1) is defined by L∗(S, v) = {x ∈ RS | x(S) = v(S), and there is no T ⊂
S and y ∈ EL∗(T, v) such that y � xT}. The weak Lorenz core is defined similarly,
but replacing � by >. The strong constrained egalitarian solution (Dutta and
Ray, 1991), EL∗(N, v), selects the Lorenz undominated allocations within the strong
Lorenz core. The weak constrained egalitarian solution (Dutta and Ray, 1989),
denoted by DR, selects the Lorenz undominated allocations within the weak Lorenz
core. For (N, v) ∈ Γ, |DR(N, v)| ≤ 1.

3. An axiomatic characterization of the strong constrained egalitarian
solution

In this section, we provide an axiomatization of the SCES based on the consistency
principle and its converse, together with constrained egalitarianism (Dutta, 1990),
a prescriptive property which fix the solution for two person games.

Before introducing consistency we need to define the concept of a reduced game.
The terminology is taken from Thomson (2006a).

Definition 1. Let (N, v) ∈ Γ, y ∈ RN and ∅ 6= T ⊂ N . The max reduced game
(Davis and Maschler, 1965) relative to T at y is the game

(
T, rTy,DM(v)

)
defined by

rTy,DM(v)(S) :=


0 if S = ∅,
max
Q⊆N\T

{v(S ∪Q)− y(Q)} if S ⊂ T,

v(N)− y(N\T ) if S = T.

For an interpretation of the max reduced game see Peleg (1986).

Roughly speaking, consistency says that there is no difference in what the players
of the reduced game will get in both the original game and in the reduced game. The
dual of consistency is named converse consistency. This property states that if an
efficient payoff vector is accepted for every pair of players, then it is accepted for the
set of all players.1 Let us now introduce formally these properties.

Let ({i, j}, v) be a 2-person weak-superadditive game. Without loss of generality, as-
sume v({i}) ≤ v({j}). The constrained egalitarian solution of the game ({i, j}, v),

1See Thomson (2006a) for a survey on consistency and its converse
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denoted by CE({i, j}, v), is defined as follows: CEj({i, j}, v) := max
{
v({i,j})

2
, v({j})

}
,

and CEi({i, j}, v) := v({i, j})− CEj({i, j}, v).

A solution σ on Γws satisfies

• constrained egalitarianism if it coincides with the constrained egalitarian
solution for all 2-person weak-superadditive games.

A solution σ on Γ
′

satisfies

• max consistency if for each (N, v) ∈ Γ
′
, each ∅ 6= T ⊂ N , and each y ∈

σ(N, v), then
(
T, rTy,DM(v)

)
∈ Γ

′
and yT ∈ σ

(
T, rTy,DM(v)

)
.

• converse max consistency if for each (N, v) ∈ Γ
′
, y ∈ X(N, v), and for each

T = {i, j} ⊆ N,
(
T, rTy,DM(v)

)
∈ Γ

′
and yT ∈ σ

(
T, rTy,DM(v)

)
, then y ∈ σ(N, v).

These properties have been widely studied and appear in axiomatizations of several
solution concepts. For instance, they appear among other properties in Peleg’s (1986)
characterization of the core. On the domain of convex games, Dutta (1990) character-
izes the WCES by means of constrained egalitarianism and max consistency. The next
example shows that the SCES is not max consistent.

Example 1. Dutta and Ray (1991)
Let (N, v) ∈ Γ where N = {1, 2, 3}, v(S) = v(N) = 1 if |S| = 2, and v(S) = 0
if |S| = 1. Here EL∗(N, v) = {(0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)} (Dutta and Ray,

1991). Consider the max reduced game
(
{1, 2}, r{1,2}x,DM(v)

)
, where x = (0.5, 0.5, 0). As

the reader can easy check, I
(
{1, 2}, r{1,2}x,DM(v)

)
= ∅ thus EL∗

(
{1, 2}, r{1,2}x,DM(v)

)
= ∅.

In fact, the above example shows that there are no max consistent solutions if we
assume that solutions only assign imputations to games, and are non-empty valued. 2

Indeed, let y = (y1, y2, y3) ∈ I(N, v). Then, yi ≥ 0 for all i ∈ N and y(N) = 1. Take
T = {1, 2} and the max reduced game

(
T, rTy,DM(v)

)
. Write r = rTy,DM(v). A simple

computation, taking into account that 0 ≤ y3 ≤ 1, shows that r({1}) = r({2}) =
r({1, 2}) = 1 − y3. Therefore,

(
T, rTy,DM(v)

)
is weakly superadditive precisely when

2 − 2y3 ≤ 1 − y3, which implies y3 ≥ 1 and thus y3 = 1. In the same way we get
y1 = y2 = 1, which is a contradiction.

The conclusion is that for the game (N, v), being itself a weakly superadditive game,
there does not exist any imputation y such that all max reduced games with respect to
y are also weakly superadditive. Therefore, no solution will be max consistent simply
because of the resulting max reduced games are not always in the class of weakly
superadditive games. We may try to overcome this drawback with the following slight
modification of the max consistency notion.

A solution σ on Γ
′

is conditional max consistent if for each (N, v) ∈ Γ
′
, each

∅ 6= T ⊂ N and each y ∈ σ(N, v), if
(
T, rTy,DM(v)

)
∈ Γ

′
then yT ∈ σ

(
T, rTy,DM(v)

)
.

2We thank an antonymous referee for enlighten us with this fact.
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The advantage of this approach is that not all games of the form
(
T, rTy,DM(v)

)
need

to be in Γ
′
. However, as shown in the following example, the SCES is not conditional

max consistent.

Example 2. Dutta and Ray (1991)
Let (N, v) ∈ Γ where N = {1, 2, 3, 4}, v({1}) = 23, v({2}) = 40, v({3}) = 39,
v({1, 2}) = 100, v({1, 3}) = 82 v({2, 3}) = 79, v({1, 2, 3}) = 159, v(N) = 167 and for
all S 6= {1, 2, 3}, v(S∪{4}) = v(S). Take y = (53, 40, 39, 35) ∈ EL∗(N, v) and consider

the max reduced game
(
{1, 3, 4}, r{1,3,4}y,DM (v)

)
. If we write r = r

{1,3,4}
y,DM (v), it is easy to

check that r({1}) = 60, r({3}) = 39, r({4}) = 0, r({1, 3}) = 119, r({1, 4}) = 60,
r({3, 4}) = 39, r({1, 3, 4}) = 127 and it is a weakly superadditive game. The unique
SCES of this max reduced game is (60, 39, 28), which is different from yT .

Hence, to characterize the SCES by means of consistency we introduce a different
notion of reduced game. To this end, we need additional definitions.

An ordering θ = (i1, i2, . . . , in) of N where |N | = n, is a bijection from {1, 2, . . . , n}
to N . We denote by ΘN the set of all orderings of N .

Definition 2. Given (N, v) ∈ Γ and θ = (i1, . . . , in) ∈ ΘN , let xθ ∈ RN be defined as
follows:

xθik := max
S∈Pik

{
v(S)

|S|

}
, for k = 1, . . . , n, (1)

where Pi1 := {S ⊆ N | i1 ∈ S} and Pik := {S ⊆ N | i1, . . . , ik−1 6∈ S, ik ∈ S}, for
k = 2, . . . , n.

Observe that in the construction of xθ underlines the principle of equal division.
As Selten (1972) showed by a great number of experimental games, this principle is
a strong distributive norm which influences the behavior of players. Thus, we can
consider xθ as a vector of “natural” claims that players can require in a sequential way.

Given (N, v) ∈ Γ and θ ∈ ΘN , let

∆θ(v) := {y ∈ X(N, v) such that y ≥ xθ},
and

Θ�N(v) := {θ′ ∈ ΘN | there is not θ ∈ ΘN such that θ �L θ
′},

where θ �L θ
′

means that there is x ∈ ∆θ(v) such that x �L y, for all y ∈ ∆θ
′
(v).

Definition 3. Let (N, v) ∈ Γ, ∅ 6= T ⊂ N , θ = (i1, i2, . . . , in) ∈ Θ�N(v) and y ∈ RN .
The order-reduced game on T at y is the game

(
T, rTy,θ(v)

)
, where

rTy,θ(v)(S) :=


0 if S = ∅
max
Q⊆N\T

{
xθ(S ∪Q)− y(Q)

}
if S ⊂ T,

v(N)− y(N \ T ) if S = T.
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In the definition of the order-reduced game, we suppose that the worth of a non-
empty coalition S ⊂ T is revaluated under the assumption that the members of S can
choose the best partners in N \ T in order to maximize the “natural” requirements
given by xθ, provided that it pays them their components of y. This is as in the Davis
and Maschler (1965) definition. Assuming that all the members of N agree that the
members of N \ T will get yN\T , the members of T may get v(N)− y(N \ T ).

A solution σ on Γws satisfies

• order-consistency if for each (N, v) ∈ Γws and each y ∈ σ(N, v), there is θ ∈
Θ�N(v) such that, for all ∅ 6= T ⊂ N ,

(
T, rTy,θ(v)

)
∈ Γws and yT ∈ σ

(
T, rTy,θ(v)

)
.

• converse order-consistency if for each (N, v) ∈ Γws and y ∈ X(N, v),
each θ ∈ Θ�N(v) and for each T = {i, j} ⊆ N,

(
T, rTy,θ(v)

)
∈ Γws and yT ∈

σ
(
T, rTy,θ(v)

)
, then y ∈ σ(N, v).

Now we characterize the SCES.

Theorem 3.1. On the domain of weak superadditive games, the SCES is the only
solution satisfying constrained egalitarianism, order-consistency, and converse order-
consistency.

Proof: Constrained egalitarianism follows directly from the fact that for 2-person
games both the strong and the weak constrained egalitarian solution coincide. To prove
the remaining axioms, we need a geometrical decomposition of the strong Lorenz core.
Let (N, v) ∈ Γ, we claim that

L∗(N, v) =
⋃
θ∈ΘN

∆θ(v). (2)

Indeed, let y ∈ L∗(N, v) and S1 ∈ arg max
S⊆N

{
v(S)

|S|

}
. Since y ∈ L∗(N, v), there is i1 ∈ S1

such that yi1 ≥
v(S1)
|S1| . Now let S2 ∈ arg max

S⊆N\{i1}

{
v(S)

|S|

}
and i2 ∈ S2 such that yi2 ≥

v(S2)
|S2| . Following this process step by step, we can generate an order θ = (i1, i2, . . . , in) ∈

ΘN . Let xθ ∈ RN as given in Definition 2. Since y ≥ xθ and y(N) = v(N), we have
that y ∈ ∆θ(v). To show the reverse inclusion, let θ ∈ ΘN and y ∈ ∆θ(v). Let S ⊂ N
be a non-empty coalition and ik ∈ S the first player in S with respect to θ. Then,

yik ≥ xθik ≥
v(S)
|S| and so y ∈ L∗(N, v).

Next we prove order-consistency. Let (N, v) ∈ Γws and y ∈ EL∗(N, v). From
expression (2) we know that there is θ = (i1, i2, . . . , in) ∈ ΘN such that y ∈ ∆θ(v).
Suppose that θ 6∈ Θ�N(v). Then, there are θ′ ∈ ΘN and y′ ∈ ∆θ′(v) such that y′ �L y, a

contradiction because, from (2), ∆θ′(v) ⊆ L∗(N, v). Hence, θ ∈ Θ�N(v). Let ∅ 6= T ⊂ N,
and consider the order-reduced game

(
T, rTy, θ(v)

)
. Now define the game (N, vθ) as

follows:
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vθ(R) :=

 xθ(R) if R 6= N,

v(N) if R = N.
(3)

Since xθ(N) ≤ v(N), we have (N, vθ) ∈ Γvex. Consider the max reduced game(
T, rTy,DM(vθ)

)
. Notice that (

T, rTy, θ(v)
)

=
(
T, rTy,DM(vθ)

)
. (4)

Clearly C(N, vθ) = ∆θ(v), and so y = DR(N, vθ) (Dutta-Ray, 1989). Since the
WCES is max consistent on the domain of convex games (Dutta, 1990),

(
T, rTy,DM(vθ)

)
∈

Γex ⊆ Γws and yT = DR
(
T, rTy,DM(vθ)

)
. Observe that C

(
T, rTy,DM(vθ)

)
= L∗

(
T, rTy,DM(vθ)

)
.

From Dutta-Ray (1989) we know that yT ∈ C
(
T, rTy,DM(vθ)

)
. Thus, from (4) we con-

clude that
(
T, rTy, θ(v)

)
∈ Γws and yT ∈ EL∗

(
T, rTy, θ(v)

)
.

Next we prove converse order-consistency. Let y ∈ X(N, v) and θ = (i1, i2, . . . , in) ∈
Θ�N(v) such that, for all T = {ik, il} ⊆ N,

(
T, rTy, θ(v)

)
∈ Γws and yT ∈ EL∗

(
T, rTy, θ(v)

)
.

Thus, for all i ∈ N, yi ≥ rTy, θ(v)({i}) ≥ xθi . Since y(N) = v(N), we have that y ∈ ∆θ(v).
Consider the game (N, vθ) as defined in (3). Let T = {i, j} ⊆ N . As we have seen before(
T, rTy, θ(v)

)
=
(
T, rTy,DM(vθ)

)
. For 2-person games, the SCES and WCES coincide, so

yT = DR
(
T, rTy,DM(vθ)

)
. Since the WCES is converse max consistent on the domain

of convex games (Dutta, 1990), y = DR (N, vθ) . Moreover, y ∈ C (N, vθ) = ∆θ(v) ⊆
L∗(N, v) (expression (2)). Suppose that y 6∈ EL∗(N, v). Then, there is y′ ∈ L∗(N, v)
such that y′ �L y. From (2) there is θ′ ∈ ΘN such that y′ ∈ ∆θ′(v). Since y′ �L y �L x,
for all x ∈ ∆θ(v), we get θ′ �L θ, a contradiction. Thus, y ∈ EL∗(N, v).

Finally, to show uniqueness, suppose there is a another solution σ on Γws satisfying
the above three axioms. For 2-person games, constrained egalitarianism implies σ =
EL∗. Let (N, v) ∈ Γws with |N | ≥ 3. First note that constrained egalitarianism
and order-consistency imply efficiency. Let y ∈ σ(N, v). By order-consistency there is
θ ∈ Θ�N(v) such that, for each T ⊂ N, |T | = 2, yT ∈ σ

(
T, rTy, θ(v)

)
. By constrained

egalitarianism, yT ∈ EL∗
(
T, rTy, θ(v)

)
. Now applying converse order-consistency we

get y ∈ EL∗(N, v). Following a symmetric argument we obtain the reverse inclusion,
EL∗(N, v) ⊆ σ(N, v). 3 �

The following examples show that in Theorem 3.1 the axioms are independent:

• Let σ1(N, v) be defined as follows: σ1(N, v) := ∅, for each (N, v) ∈ Γws. Then,
σ1 satisfies order-consistency, converse order-consistency, but not constrained
egalitarianism.
• Let σ2(N, v) be defined as follows: σ2(N, v) := CE(N, v) if |N | = 2 and
σ2(N, v) := X(N, v) if |N | > 2, for each (N, v) ∈ Γws. Then, σ2 satisfies con-
strained egalitarianism, converse order-consistency, but not order-consistency.

3Notice that this is a standard application of the Elevator Lemma (for more details see Thomson
(2006b)).
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• Let σ3(N, v) be defined as follows: σ3(N, v) := CE(N, v) if |N | = 2, and
σ3(N, v) := ∅ if |N | > 2, for each (N, v) ∈ Γws. Then, σ3 satisfies constrained
egalitarianism, order-consistency, but not converse order-consistency.
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