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1 Introduction

A contest is a strategic game in which players expend costly effort in order to
increase their probability of winning a given prize. Since the pioneering work of
Tullock (1980) and Dixit (1987), there is now a large and growing literature on
the theory and application of contests.1 One of the most important questions is
the existence and uniqueness of pure Nash equilibrium. It has been extensively
studied under the assumption of an exogenous prize; see e.g. Pérez-Castrillo and
Verdier (1992), Szidarovszky and Okuguchi (1997), Cornes and Hartley (2005), and
Yamazaki (2008).

However, many contests, such as R&D contest and labor tournament, involve
a form of effort that changes the size of the total prize as well as its distribution.2

Chung (1996) has first analyzed a rent-seeking contest with an endogenous prize
(rent), which is increasing in aggregate efforts of the players. Okuguchi (2005) and
Corchón (2007) showed that there exists a unique symmetric pure Nash equilibrium
in Chung’s endogenous contest with a general contest success function. In these
studies, players are assumed to be identical in terms of abilities and valuations of
the prize.

In many situations, each player may have a different valuation of the prize (e.g.,
Hillman and Riley, 1989). In addition each player may have a different ability
to convert expenditures to productive efforts (e.g., Baik, 1994). Hence, in this
paper, we prove that there exists a unique asymmetric pure Nash equilibrium in
an endogenous contest with heterogeneity of players’ abilities and valuations of the
prize. The method used by Cornes and Hartley (2003, 2005) will be used to show
the existence and uniqueness of the pure Nash equilibrium.

The rest of the paper is organized as follows. Section 2 explains the basic model
and the assumptions. In section 3, we prove that there exists a unique pure Nash
equilibrium.

2 The Model

Let n be the number of players in a contest. Players are assumed to be risk-
neutral. Player i(= 1, · · · , n) independently chooses a level of effort in order to
seek the prize. Our analysis of contests is formulated as a simultaneous-move game
and the solution concept we use throughout paper is that of a pure-strategy Nash
equilibrium.

If xi is player i’s expenditure in contests, then the probability for winning the
prize is given as

pi =
fi(xi)∑n

j=1 fj(xj)
(1)

1See the excellent surveys by Nitzan (1994) and Konrad (2007).
2For instance, the research activity will influence not only the probability of winning, but also

the value of the winner’s prize in R&D contests (Baye and Hoppe, 2003). This is because players’
R&D efforts have a positive externality on the value of the prize .
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where fi(·) is an increasing function for all i.3 Szidarovszky and Okuguchi (1997)
called fi(·) player i’s production function for lotteries. In line with most of the
existence literature, we adopt the following assumption.
Assumption 1. For all i the function fi satisfies the following conditions:
fi is twice differentiable, fi(0) = 0, and f ′

i(xi) > 0, f
′′
i (xi) < 0 for all xi ≥ 0.

Notice that players’ production functions do not necessarily have to be identical.
A particularly well-studied form for fi is fi(xi) = aix

r
i , where r > 0 and ai > 0.

This asymmetric form was given an axiomatic foundation by Clark and Riis (1998),
following an earlier axiomatization by Skaperdas (1996) of the symmetric form.

It will prove convenient to change variables by setting yi = fi(xi) for each i.
Then the function fi(·) may be thought of as transforming individual expenditure
xi into effective efforts yi. We will henceforth refer to xi as the expenditure, and yi as
the effort, of player i. Since fi is monotonic, it has a well-defined inverse function,
gi(yi) = f−1

i (yi). Then, Assumption 1 (A.1 in what follows) implies that

gi(0) = 0, and g′
i(yi) > 0, g

′′
i (yi) > 0 for all yi ∈ [0, fi(∞)). (2)

The function gi(yi) describes the total cost to player i of generating the level yi of
effort.

Next, we introduce the following assumptions on the prize as a function of the
aggregate effort by all players. Set Y =

∑n
j=1 yj for aggregate effort.

Assumption 2. For all i the value of the prize is endogenously determined by the
aggregate effort: Ri(Y ). Ri(Y ) is twice differentiable and satisfies Ri(Y ) > 0 for
Y ≥ 0 and R′

i(Y ) > 0, R
′′
i (Y ) ≤ 0 for all Y > 0.

Our characterization of endogenous prize in A.2 follows Chung (1996), Okuguchi
(2005) and Corchón (2007), but we assume that players’ valuations of the prize may
be different. For example, a functional form of Ri is Ri(Y ) = R̄i + biY , where
R̄i > 0, bi > 0. R̄i is player i’s intrinsic value of the prize and bi is i’s coefficient of
enhancement of the prize by aggregate efforts. A.2, together with A.1 , ensures that
a player’s expected payoff is strictly concave function of her own effort. In addition,
A.2 implies that the elasticity of the prize with respect to change the aggregate
effort is less than 1 for positive Y . We will write εi = Y R

′
i/Ri for the elasticity of

the prize of player i. Notice that εi needs not necessarily be constant.
Consequently, the expected payoff of player i is described by

πi(yi, Y−i) = Ri(Y )pi − xi = Ri(yi + Y−i)
yi

yi + Y−i
− gi(yi), (3)

where Y−i =
∑n

j �=i yj. Player i is assumed to maximize (3) with respect to yi subject
to yi ≥ 0. The expression (3) applies provided at least one player makes a positive
effort. If yi = 0 for all i we assume that no player wins the prize so that πi(0, 0) = 0.
Finally, for the sake of simplicity, we will assume that all players have initial wealth
large enough such that the budget constraints do not bind at all.

3Another interpretation of pi is that each player i receives a fraction fi(xi)�n
j=1 fj(xj)

of the contested
prize.
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3 Existence Analysis

We can now calculate the best response of player i. Assume first that Y−i > 0,
so that the other players spend a positive amount of resources on contest activities.
Then, the first-order condition for the maximization of (3) with respect to yi ≥ 0
yields

[
R

′
i(yi + Y−i)

yi

yi + Y−i
+ Ri(yi + Y−i)

Y−i

(yi + Y−i)2
− g

′
i(yi)

]≤ 0 and [· · · ]yi = 0. (4)

As the second-order condition we get

R
′′
i (yi + Y−i)

yi

yi + Y−i

− 2Ri(yi + Y−i)
Y−i

(yi + Y−i)3
(1 − εi) − g

′′
i (yi) < 0. (5)

Under A.1 and A.2, the second-order condition (5) is satisfied. Notice next that if
Y−i = 0, player i’s payoff has a maximum at a finite and positive value of effort,
which can be obtained from the first-order condition with Y−i = 0 due to A.1 and
A.2. Hence, it follows from (4) that given Y−i ≥ 0, player i’s best response function
yi = φi(Y−i) is well defined and continuous in Y−i. It is well known that a vector
(y∗

1, · · · , y∗
n) is an equilibrium if and only if for all i, y∗

i is the best response with
fixed values of Y ∗

−i.
We can rewrite the best responses of the players in terms of aggregate effort by

rewriting the first-order conditions (4) in the form of

[
R

′
i(Y )

yi

Y
+

Ri(Y )

Y

(
1 − yi

Y

)−g′
i(yi)

]≤ 0 and [· · · ]yi = 0 (6)

Since Y = 0 can never be an equilibrium in our game, application of the implicit
function theorem to (6) enable us to express yi as a function of Y , namely yi = Φi(Y ).
Following Wolfstetter (1999, p. 91), we call this function the inclusive reaction
function of player i.4

Rather than use the inclusive reaction function directly, however, we will examine
properties of player i’s share function si(Y ) = Φi(Y )

Y
, which is proposed by Cornes

and Hartley (2003, 2005). It can be readily checked that Nash equilibrium values of
Y occur where the aggregate share function equals unity. That is,

∑n
i=1 si(Y

∗) = 1.
Given Y ∗, the corresponding equilibrium (y∗

1, · · · , y∗
n) is found by multiplying Y ∗ by

each player’s share evaluated at Y ∗: y∗
i = Y ∗si(Y

∗). This result enables us to prove
the existence of a unique equilibrium by showing that the aggregate share is equal
to one at a single value of Y . We define player i’s share value as σi = yi

Y
and rewrite

(6) as

[
R′

i(Y )σi +
Ri(Y )

Y
(1 − σi) − g′

i(σiY )
]≤ 0 and [· · · ]σi = 0. (7)

This condition leads directly to the next lemma.

4Szidarovszky and Okuguchi (1997) have adapted this function to prove that there exists a
unique equilibrium in a rent-seeking contest with exogenous rents.
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Lemma 1. Under A.1 and A.2 there exists a share function: si(Y ). si(Y ) satisfies
si(Y ) = 0 if and only if f ′

i(0) < ∞ and Y ≥ Ri(Y )f ′
i(0). Otherwise, si(Y ) = σi,

where σi is the unique solution of

R′
i(Y )σi +

Ri(Y )

Y
(1 − σi) = g′

i(σiY ). (8)

Proof. Let us denote the left-hand side of (8) by hi(σi) and the right-hand side by
zi(σi). An intersection of these two functions, if any, which is a solution of (8),
determines share values. The function hi(σi) has the following properties in light of
A.2.

hi(0) =
Ri(Y )

Y
> 0, hi(1) = R′

i(Y ) > 0, hi(0) − hi(1) =
Ri(Y )

Y
(1 − εi) > 0,

h′
i(σi) = −Ri(Y )

Y
(1 − εi) < 0.

Then, the function hi(σi) is strictly decreasing in σi, and is bounded from above
and below. In contrast, the function zi(σi) has the following properties due to A.1
or (2).

zi(0) = g′
i(0) ≥ 0, zi(1) = g′

i(Y ) > 0, zi(0) − zi(1) = g′
i(0) − g′

i(Y ) < 0,

z′i(σ) = g
′′
i (σiY )Y > 0.

The function zi(σi) is strictly increasing in σi. Notice in addition that zi(σi) exceeds
the left at σi = 1 for some Y > 0 by A.1 and A.2. Thus, we may conclude that there
is a unique share value in interval (0, 1); it is zero if and only if Ri(Y ) ≤ g′

i(0)Y .
The proof is completed by observing that g′

i(0) = [f ′
i(0)]−1.

We may use this lemma to infer the crucial qualitative properties of the share
function derived under A.1 and A.2. The full details are set out in the following
lemma.

Lemma 2. Under A.1 and A.2, the share function si(Y ) has the following proper-
ties:

1. si(Y ) is continuous,

2. limY →0 si(Y ) = 1,

3. si(Y ) is strictly decreasing where positive,

4. if f ′
i(0) < ∞, si(Y ) > 0 for 0 < Y < Ri(Y )f ′

i(0) and si(Y ) = 0 if Y ≥
Ri(Y )f ′

i(0), and

5. if f ′
i(0) = ∞, si(Y ) > 0 for all Y > 0 and si(Y ) → 0 as Y → ∞.
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Proof. First, note that the shares are continuous (indeed differentiable where pos-
itive) by the implicit function theorem, establishing Part 1. Second, since g′

i(0) is
finite, letting Y → 0 on both side of (8) shows that the share must approach one as
Y approaches zero, giving Part 2. To justify Part 3, we investigate the slope of si.
The total differential of (8) has the following form:

(
R′

i −
Ri

Y
− g

′′
i Y

)
dσi =

( 1

Y

(
σiY (g

′′
i − R

′′
i ) + (1 − σi)(

Ri

Y
− R′

i)
))

dY.

Using the elasticity of prize of player i, εi, we can then express the slope of si as
follows:

s′i(Y ) =
(g

′′
i − R

′′
i )σiY + Ri(1−σi)

Y
(1 − εi)

−Ri(1 − εi) − g
′′
i Y 2

< 0.

The inequality follows since the denominator is negative by A.1 and A.2. The nu-
merator is positive in light of A.1 and A.2. We may deduce that the positive shares
are strictly decreasing in Y, establishing Part 3. The fourth part is an immediate
consequence of Lemma 1. Finally, suppose that the marginal product f ′

i(0) is un-
bounded, which implies g′

i(0) = 0. Then (8) can hold as Y → ∞ only if the share
function approaches zero. In fact, (8) can be rewritten as

1 − (1 − εi)σi = g′
i(σiY )

Y

Ri(Y )
.

Notice that an increase in Y implies an increase in the right-hand side of the above
equation due to A.1 and A.2. On the other hand, the left-hand side of it is bounded
above (i.e., 1) in light of A.2. Hence, as Y → ∞, for (8) to be satisfied we must
have σi → 0.

This completes the proof of the lemma.

Recall that a Nash equilibrium Y ∗ corresponds to the solution to
∑n

i=1 si(Y
∗) =

1. It follows from Lemma 2 that the aggregate share function is continuous, exceeds
1 for small enough Y , is less than 1 for large enough Y and is strictly decreasing when
positive. Therefore, the equilibrium value is unique. Then, a unique Y ∗ implies a
unique strategy profile (y∗

1, · · · , y∗
n), and we have the following result.

Theorem 1. Under A.1 and A.2, there exists a unique pure Nash equilibrium in
asymmetric contests with endogenous prizes.

Finally, notice that for each player i and any fixed value of Y−i, the solution
yi = 0 always gives zero payoff value for this player. Therefore, at the best response,
it must be non-negative. Hence, under A.1 and A.2, each player enjoys non-negative
expected payoff at the equilibrium.

2749



Economics Bulletin, 2012, Vol. 32 No. 4 pp. 2744-2751

References

[1] Baik, K. H. (1994), “Effort levels in contests with two asymmetric players”
Souther Economic Journal 61, 367-378.

[2] Baye, M. R. and H. C. Hoppe (2003), “The strategic equivalence of rent-seeking,
innovation, and patent-race games” Games and Economic Behavior 44, 217-
226.

[3] Chung, T-Y. (1996), “Rent-seeking contest when the prize increases with ag-
gregate efforts” Public Choice 87, 55-66.

[4] Clark, D. J. and C. Riis (1998), “Contest success functions: An extension”
Economic Theory 11, 201-204.

[5] Corchón, L. C. (2007), “The theory of contests: A survey” Review of Economic
Design 11, 69-100.

[6] Cornes, R. and R. Hartley (2003), “Risk aversion, heterogeneity and contests”
Public Choice 117, 1-25.

[7] Cornes, R. and R. Hartley (2005), “Asymmetric contests with general technolo-
gies” Economic Theory 26, 923-946.

[8] Dixit, A. (1987), “Strategic behavior in contests” American Economic Review
77, 891-898.

[9] Hillman, A. L. and J. C. Riley (1989), “Political contestable rents and transfers”
Economics and Politics 1, 17-39.

[10] Konrad, K. A. (2007)，Strategy in Contests-an Introduction，WZB Discussion
Paper SP II 2007-01.

[11] Nitzan, S. (1994)，“Modelling rent-seeking contests” European Journal of Po-
litical Economy 10, 41-60.

[12] Okuguchi, K. (2005)，Existence of Nash equilibria in endogenous rent-seeking
games, In A. S. Nowak and S. Krzysztof (Eds.)，Advances in Dynamic
Games: Applications to Economics, Finance Optimization, and Stochastic Con-
trol(pp.445-453)，Boston: Birkhäuser.
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