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1. Introduction 
 
In an influential study, Blanchard and Quah (BQ, 1989) developed a vector autoregression (VAR) 
model that identifies the effects of aggregate supply (AS) and aggregate demand (AD) shocks on 
real output and the unemployment rate. Since then, numerous applications and extensions have 
followed. The BQ model employs as an identifying assumption the long-run output neutrality 
condition in which an AD shock has no long-run effects on real output. This assumption 
represents an important point of departure from the Sims (1980) orthogonalization, which places 
a recursive structure on the contemporaneous relationships among the variables in the model. 

Nevertheless, we show that the BQ model produces results identical to those based on 
the Sims orthogonalization if the first-ordered variable (real output) is not caused in the long run 
by the second-ordered variable (unemployment rate). This proposition can be applied to any two-
variable model irrespective of whether the variables are I(0) or I(1). For example, while the 
unemployment rate is assumed to be I(0) in the BQ model, the second-ordered variable can also 
be an I(1) process, as in a model of real output and inflation (Quah and Vahey, 1995; Cecchetti 
and Rich, 2001; Cover et al. 2006). Section 2 formally derives the conditions under which BQ 
and Sims identification procedures are equivalent in the BQ model of output and the 
unemployment rate. Some empirical examples are offered in Section 3. Section 4 concludes the 
paper. 

 
2. Equivalence between BQ and Sims identification procedures 

 
In the context of BQ, consider a reduced-form VAR model, given as 

t tA(L)z e                                                         (1) 

where tz  t t( y ,u ) ' , ty  is real output, tu  is the unemployment rate, (1 L)    is the 

first difference operator, L is the lag operator, 
p i

ii 1
A(L) I A L  , t 1t 2te (e ,e ) '  is a vector 

of reduced-form shocks and is iid with a mean of zero and a covariance matrix of 
'

t t 11 12 12 22E(e e ) [( , ) '   ( , ) ']       . The constant term is suppressed for the sake of 

illustration. The vector moving average (VMA) representation for Equation (1) can be expressed 
as 

t tz C(L)e                                                         (2) 

where 2
0 1 2C(L) C C L C L      , 0C I , and ii 0

C(1) C

  11 21 12 22[(c ,c ) '  (c ,c ) '] . 

Subject to identification, a structural VMA representation corresponding to Equation 
(2) is given as 

t tz (L)                                                           (3) 

where 2
0 1 2(L) L L           , i 11 21 12 22i 0

(1) [( , ) '  ( , ) ']

        , and 

t 1t 2t( , ) '     is a vector of structural shocks governing the economy. Following BQ, 1t  and 

2t  are denoted as an aggregate supply (AS) shock and an aggregate demand (AD) shock, 

respectively. These are assumed to have a mean of zero and a covariance matrix of 
'

t t 12 12E( ) [(1, ) '  ( ,1) ']        , where each structural shock is normalized to have unit 

variance without a loss of generality. From Equations (2) and (3), the relationships between the 
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reduced-form and structural parameters are 

0(L) C(L)                                                         (4) 

and 

0 t te   .                                                         (5) 

For the exact identification of the structural shocks, the four parameters in 0  must 

be uniquely determined. BQ utilize two identifying assumptions: uncorrelatedness between  1t  

and 2t  and the long-run output neutrality condition. The first assumption leads to , 

and   '
0 0     in Equation (5) then yields three restrictions on 0 , where ‘  ’ denotes the BQ 

procedure. The second assumption implies that the element (1,2) of the long-run impact matrix 
(1)  in Equation (4) is equal to zero. This provides the final identifying restriction on 0  by 

setting the (1,2) element of 0C(1)  to zero. Accordingly, solving   '
0 0     under the long-

run neutrality condition gives the four parameters in 0 . These are given as 


2

11 11 12 12 11 12 12 22 12 11 22 12
0

2
11 11 22 12

( / )(c c ) / (c c )     (1 / )(c )

/ (1 / )(c )

                
        

       (6) 

where 11 12 12 22(c c )      and 2 2
11 11 11 12 12 12 22c 2c c c       . 

Once 0  is estimated, the impulse responses and the forecast-error variances of the series can 
be computed from Equation (4). 

Sims orthogonalization applies the Choleski decomposition to the covariance matrix of 

reduced-form errors, i.e.  
'

0 0    , where ‘  ’ denotes the Sims procedure. This is equivalent to 
imposing the uncorrelatedness condition between 1t  and 2t  and the restriction that 2t  has 

no contemporaneous impact on real output. The parameters in 0  are obtained as follows: 

 11
0

2
12 11 11 22 12 11

0

/        ( ) /

 
  
        

                                (7) 

The following proposition can now be established: 
Proposition. The BQ and Sims identification schemes are equivalent if the first-ordered variable 
is not caused in the long run by the second-ordered variable. 
Proof. The first-ordered variable is not caused in the long run by the second ordered variable if 

12A (1) 0 , where 12A (1)  is the (1,2) element of 
p

ii 1
A(1) I A   

in Equation (1). This 

can be assessed statistically in the usual manner (e.g., by Granger causality tests). Because
1A(1) C(1)  , it is also true that 12 12C (1) c 0   in Equation (2), giving C(1) a lower 

triangular matrix. Substituting 12c 0  into Equation (6) results in 0  becoming identical to 

0  in Equation (7). This leads to  (L) (L)    in Equation (4) and hence, the responses are all 
identical between the BQ and Sims procedures. For example, the long-run impact matrix of 
structural shocks is equally given as 

12 0 
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   11 11
0 0

2
21 11 22 12 11 22 11 22 12 11

c 0
(1) C(1) C(1) (1)

(c c ) /    c ( ) /

 
        
          

. 

Two remarks merit attention. First, it is obvious that the proposition holds for any two-
variable model irrespective of whether the variables are I(0) or I(1). For example, the second-
ordered variable can be an I(1) process, unlike the BQ model. Models of two I(1) variables are 
also permissible. An exception is when these variables are cointegrated. In this case, Ribba (1997) 
and Fisher and Huh (1999) showed that if the first-ordered variable is weakly exogenous to the 
cointegrating relationship, the BQ and Sims identification schemes are equivalent. An interesting 
question is if their procedures may be applied to the BQ model above because the stationary 
unemployment rate itself can be regarded as the cointegrating relationship. If one proceeds as in 
the cointegrated case, the model will involve tu  rather than tu . As Levtchenkova et al. (1996) 

point out, this has the effect of preserving only the information contained in 11 11(1)    (see 

Equation (3)) as t 21 1tu (1 L) (L)      and, when L=1, any information about 21 21(1)    

would disappear from such a model. Consequently, the BQ and Sims identification schemes do 
not necessarily produce identical results. Second, the proposition may also be applied to models 
consisting of more than two variables. The BQ and Sims identification schemes are equivalent if 
C(1) is lower triangular; that is, the first-ordered variable is not caused in the long run by any of 
the variables in the model, the second-ordered variable is not caused in the long run by any of the 
variables saving the first-ordered one, and so on. 

 
3. Empirical illustration 

 
This section provides two empirical examples. One is the BQ VAR model of US output and the 
unemployment rate. The other is the two-variable VAR model in Cover et al. (2006), which 
consists of US output and inflation. In this model, both variables were found to be I(1) processes 
with no cointegration, and the two structural shocks were identified using the BQ procedure. 
Definitions of the data series and their sources are as follows. The measure of output ( ty ) is the 

log of real GDP. The unemployment rate ( tu ) is for all civilians 16 years of age and older. The 

rate of inflation ( t ) is measured as the quarterly percentage change in the GDP deflator. All 

data were taken from FRED at the Federal Reserve Bank of St. Louis. The sample period is 
1950:Q1 to 2011:Q1. Following the original contributions, the chosen lag lengths are p=8 for the 
former and p=10 for the latter. For the BQ model, a dummy is included to take into account a 
trend break in 1974 with a value of 1 up to 1973 and 0 afterwards. Data on output and inflation 
are differenced once to ensure stationarity. 

Table I reports the testing results. For the BQ model, the t-test statistic strongly rejects 
the null hypothesis that the coefficients of the unemployment rate in the output equation are 
summed to zero. Because output can be caused by the unemployment rate in the long run, the 
BQ and Sims identification procedures would not produce the same results. As a robustness 
check, Figure 1 (upper panel) shows the responses of the variables to the structural shocks 
identified using the BQ and Sims orthogonalization, respectively. It is easy to see that the 
responses are indeed different depending on which scheme is used. Moving to the model of 
Cover et al., the null hypothesis that the coefficients of the inflation rate in the output equation 
are summed to zero cannot be rejected at conventional significant levels. Output is not caused in 
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the long-run by inflation and hence, the BQ and Sims identification schemes produce identical 
results. The lower panel in Figure 1 confirms that the responses are indistinguishable between the 
two schemes across all occasions. 
 

Table I. Results of causality tests 

Blanchard and Quah (1989) Cover et al. (2006) 

12A (1)  t-test 12A (1)  t-test 

0.144 (0.05) 0.00  0.190 (0.25) 0.46 

The first column reports the sum of the coefficients of the unemployment rate in the output 
equation for the BQ model. The figures in parentheses are the standard errors. The second 
column reports the marginal significance level (p-value) of the t-test statistic for the null 
hypothesis in which the sum of the coefficients is equal to zero (i.e., 12A (1) 0 ). The third and 

fourth columns do the same for the sum of the coefficients of inflation in the output equation 
from the Cover et al. model. 
 

4. Concluding remarks 
 
In identifying aggregate supply and aggregate demand shocks, Blanchard and Quah (BQ, 1989) 
adopted a long-run restriction stating that aggregate demand shocks do not have a long-run effect 
on real output. This approach differs from the traditional method of Sims (1980), which assumes 
a contemporaneously recursive ordering of the variables. Yet, the present paper shows that if the 
first-ordered variable in the model is not caused in the long run by the second-ordered variable, 
the BQ and Sims identification schemes produce identical results. This proposition is applied to 
two empirical examples. In the model of output and the unemployment rate, the BQ and Sims 
identification schemes do not produce identical results, whereas they do in the model of output 
and inflation. 
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Figure 1. Impulse responses 
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