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Abstract

We show that, in a pure exchange smooth economy, a redistribution of endowments involving singular economies can
be supported by a unique and continuous path of supporting equilibrium price vectors if this redistribution is the
projection of a path on the equilibrium manifold transversal to the set of critical equilibria.
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1 Introduction

In a smooth pure exchange economy, can a continuous redistribution of endow-
ments, which crosses singular economies, be such that it has a unique and con-
tinuous path of equilibrium prices? This issue was first raised by Garratt and
Goenka (1995), where the path of redistribution is assumed to belong to a con-
nected component of endowments containting Pareto efficient allocations. This is
a very strong assumption: in general, arbitrary endowments may belong to differ-
ent connected components of the “Edgeworth box” and they can only be joined
by paths which cross singularities, characterized by discontinuities in equilibrium
prices.

It is well-known that continuity of supporting equilibrium price changes charac-
terizes local perturbations of (regular) economies Balasko (1978b); Dierker (1982).
This is a stability property with evident implications in comparative statics and
dynamics. In the sequel, we will refer to this property as smooth selection prop-
erty (SSP). In a recent paper Loi and Matta (2010) have investigated whether
this property holds if endowments are generically redistributed across consumers.
By using standard properties of covering spaces, Loi and Matta (2010) show that
SSP can be extended to non-local redistributions of regular endowments (see also
Theorem 2.4 in Section 2). More precisely, there exists a unique continuous path
of equilibrium prices which support a redistribution of regular economies. The key
ingredient to prove this result, a property of covering spaces known as arc lifting
property (ALP) (see Proposition 2.1 in Section 2), cannot be used if the endow-
ments redistributed are singular economies. In this case the existence of such a
path becomes an issue.

In this paper we explore the connection between structural stability and sin-
gular economies. A redistribution policy which encounters catastrophes cannot be
generically supported by a continuous equilibrium price path. Using the geometric
construction by Loi and Matta (2009), we show in Theorem 3.1 under what con-
ditions it is still possible to get a (unique) continuous path of equilibrium prices
vectors if endowments are changed according to a redistribution which encounters
catastrophes. In our construction we rely on the existence of minimal paths, i.e.,
paths which minimize the distance between regular equilibria, where the length
between two regular equilibria is defined as the number of intersection points of
all the paths connecting them with the set of critical equilibria (see Loi and Matta
(2009)). The idea is that one needs to construct a path which intersects the set of
critical equilibria transversally in a finite number of points and to project it onto
the space of endowments. In order to get uniqueness, it is necessary to fix as many
supporting price vectors as many connected components crossed by the path on
E(r) (see Figure 1 in Section 3). This is due to the potential discontinuity which
may arise when a path crosses singular economies. Hence, in this abstract setting,
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a minimal path minimizes the social planner’s intervention in the economy.

The structure of the paper is the following. Section 2 is devoted to the illustra-
tion of the economic model and some mathematical results. In Section 3 we prove
our main result, Theorem 3.1.

2 Preliminaries

We refer to Loi and Matta (2010) and references therein for some mathematical
results on covering spaces and lifting properties. For reader’s convenience we recall
here some definitions and properties.

Let X and X be two (not necessarily connected) topological spaces. A continu-
ous map p : X = X is called a covering map if it satisfies the following conditions:

(a) p is surjective;

(b) each x € X has an open neighbourhood U such that p~'(U) is a disjoint
union of open sets of X, each of which is mapped by p homeomorphically
onto U.

The neighbourhood U is said to be well-covered for p and the set p~'(x) is called
the fiber of x. Let p : X — X be a continuous map (not necessarily a covering)
and let Y be a topological space. A [ift of a continuous map f :Y — X is a map
f Y — X such that pf f. We recall that an arc on X is a map o : [ — X,
where I = [0, 1]. The points a(0) and «(1) are called the starting and final points
of a.

Proposition 2.1 (ALP: arc lifting property) Given a covering spacep : X —
X, let a: I — X be an arc with starting point xo and let To be any point in the
fiber of xo. There exists a unique lift & : I — X of a with starting point Zy.

In the previous proposition the existence of a lift relies on properties of covering
maps. Once a lift is given its uniqueness depends only on the fact that p is a local
diffeomorphism as expressed by the following proposition. For completeness, we
include a proof of this standard result which will be of constant use in the proof
of Theorem 3.1.

Proposition 2.2 (uniqueness of lifts for local homeomorphisms) Letp : X =
X be a surjective local homeomorphism, Y a connected topological space, yo € Y,
e X and f:Y — X a map such that f(yo) = xo = p(%o). A lift f:Y = X of

f such that f(yo) = Zo is unique.
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Proof: Assume there exists another lift ' of f such that f(yo) = f'(y0) = & and
consider the set Y' = {y € Y|f(y) = f'(y)}. We are going to prove that Y” is open
and closed in Y and hence, since Y is connected, Y’ =Y. In order to prove that
Y is open choose a point y € Y/ and let U be an open nelghborhood of f (y) such
that pjy : U — p(U) is a homeomorphism. The open set V' = f- YU)n f10)
contains y. Let z be any point in V. Observe that f( ), f'(z) € U. By the
injectivity of pr, p(f(2)) = p(f'(z)) implies f(2) = f'(z) and, hence, V C Y".
This shows that Y is open. Define now Y =Y \ Y’ and let w € Y. Observe that
p(f(w)) = p(f'(w)) = f(w). Let U’ and U” be two disjoint open neighborhoods of
f(w) and f"(w), respectively, homeomorphlc to an open neighborhood Z of f(w).
Consider the open set V = f~1(U")U f’ L(U") and choose any point z € V. Since
f(2) € Z we have that f(z) € U’ and f'(z) € U”, which implies that w € Y. This
shows that Y’ is closed. d

As far as the economic setting is concerned, we consider a smooth pure ex-
change economy with fixed total resources (see Balasko (1988)). Let m and [ be,
respectively, the (finite) number of agents and commodities. Let S = {p € R! | p; >
0,i=1,2,...,1 —1,p, = 1} be the set of prices normalized by the numeraire con-
vention. Let r € R! be the vector of fixed total resources and denote by Q(r) the
set of endowments with fixed total resources, i.e., Q(r) = {w € R™| Y w; = r}.
Define the equilibrium manifold, denoted by FE(r), the set of pairs of prices and
endowments such that aggregate net demand is zero, i.e.,

m

E(r)={(p,w) € Sx Qr) | Y filp,p-wi) =1},

i=1

where f;(p,w;), denotes consumer i’s demand.

The set E(r) is globally diffeomorphic to R™~Y (see (Balasko, 1988, Ch. 5)).
Let 7 : E(r) — Q(r) be the natural projection, i.e. the restriction to E(r) of the
projection S x Q(r) — Q(r), such that (p,w) — w. The map 7 is smooth, proper
and surjective. One can define the set of critical equilibria, denoted by E.(r), as
the pairs (p,w) € E(r) such that the derivative of 7 is not onto (Balasko, 1978b).
The set E.(r) is a closed subset of measure zero of the equilibrium manifold E(r)
(Balasko, 1992). The set of singular economies, denoted by ¥, is the image via 7
of the set E.(r). The set X is a closed (by properness of 7) and a measure zero set
in Q(r) (by Sard’s theorem). Let us define the regular economies R = Q(r) \ ¥ as
the regular values of the map m. We state as a theorem the following important
result due to Balasko.

Theorem 2.3 (Balasko (1988)) The map T - 7Y R) — R is a finite cov-
ering.
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According to this theorem, see (Balasko, 1988, p. 94), smooth local changes of the
parameter w imply smooth changes of the corresponding equilibrium price vectors,
namely there exists a supporting equilibrium price vector sufficiently close to the
initial one (a property known as smooth selection property, SSP).

SSP can be extended to arbitrary changes of regular economies, represented by a
continuous map 7 : [0, 1] — Q(r), where wy = v(0) and w; = (1) (the map ~ can
be thought as a redistribution policy). If one writes, using standard vector notation
to denote the aggregate excess demand function, the equilibrium condition as
z(p(t),v(t)) =0, ¢t € [0,1], Loi and Matta (2010) have showed that p(t) is locally
unique and it is changing continuously while the parameter ~(¢) € {(r) is varying.

Theorem 2.4 (Loi and Matta (2010)) Let v : I — R be a reqular policy con-
necting wy = v(0) and wy = (1) and let py be the supporting equilibrium price
vector associated with wy. Then there exists a unique lift 7 : I — 7= (R) of 7.

3 Main result

Let o : [0,1] = Q(r) be a redistribution such that o(t) € ¥ for some ¢t € (0,1). In
this case the existence of a unique continuous equilibrium price change supporting
o(t) becomes an issue since ALP cannot be applied (the map Tty - ) =X
is not a covering).

We address this problem using a different strategy: assuming that an equilibrium
path exists, under what conditions is it unique? Let w (w') € R be the initial (final)
allocation and let p be he supporting equilibrium price vector of w. We construct
a minimal path 5(t) on E(r), i.e., a path which connects two regular equilibria
(p,w) = 2 and (p/,w’) = y and which minimizes the number of intersection points
with the set of critical equilibria E.(r). The existence of such a path has been
showed by Loi and Matta (2009). The redistribution  : [0, 1] — Q(r) is found by
projecting 4 onto the space of economies, i.e. y(t) = 7(5(¢)). Theorem 3.1 shows
under what conditions this policy admits a (unique) lift.

Theorem 3.1 Let7 : I — E(r) be a minimal arc connecting two reqular equilibria
x and y, where x,y € 7 (R). Then 7 is uniquely determined by its projection
v =m(%) and by a finite number of its points.

Proof: Let C' = E.(r) N4(I). Since 4 is a minimal path either C' = or C'is a
finite number of points. If C' = () then the conclusion follows by Proposition 2.2
applied to the local diffeomorphism 7 : E'\ E.(r) — 7(E\ E.(r)). In this case one
does not need to fix any point. If C' is nonempty set C' = {c1,co,...,cx}. Then
there exist 0 < t; < ... < t; < 1 such that ¢; = 3(¢;), ¢ = 1,..., k. Choose
57; = ’?(Si), with 7 = ].,...,k?— 1, with tj <s§; < tj+1, ] = 1,...,]{5— 1 such that
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7(sj) € E'\ E.(r). Consider the following subarcs of 4: 4¢ 7%1»’7517 e LAY
connecting x with ¢y, ¢; with &,..., &1 with ¢, and ¢, with y. By applying
again Proposition 2.2 to the local diffecomorphism 7 : E\ E.(r) — 7(E \ E.(r))

it follows that 35 \ {c1}, 78 \ {er}, 7e2 \ {ea}, -, 3¢, \ e}, 3, \ {er} are the

unique lifts of w(35") \ {m(c1)}, 7(35) \ {m ()}, 7 (&) \{m(e2) - 7 (e, )\
{m(cx)},7(5 ;r(cyk))) \ {7(cx)} passing through the points {&;, ... ,£k_1}, respectively.
Then, by a continuity argument, 7 is the unique lift of v = (%) passing through
the finite set of points C'U {&1, ..., &1} O

€1

d J. é

€ @ — —m — — o — e e = =

w(e2) m(&) () o’

Figure 1: Unique lift of a minimal arc.

Figure 1 depicts a simple one-dimensional illustration of Theorem 3.1, where
the curve represents the equilibrium manifold. The path 7 : [0,1] — E(r) has x =
7(0) and y = 4(1) as endpoints. It crosses two critical points, ¢; = J(t;), i = 1, 2.
By Theorem 3.1, it is uniquely determined by the intervals m(55)\ {m(c1)}, 7(35)\
{m(cn)}, m(3) \ {m(e2)} m(752) \ {m(c2)} and by the point & =(s1).

The same framework can be used if one wants to construct an algorithm to
find a redistribution policy which is optimal with respect to a given economic cri-
terion. The idea is to endow the equilibrium manifold with a Riemannian metric
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which embodies this criterion. Roughly speaking, the length of a redistribution
path with respect to this metric is a measure of the achievement of this crite-
rion: a path which minimizes distance (geodesic) is, by construction, optimal. In
Loi and Matta (2011) it is shown that there exists a Riemannian metric on the
equilibrium manifold E(r), which coincides with any (fixed) Riemannian metric
with an economic meaning outside an arbitrarily small neighborhood of the set of
critical equilibria, such that a minimal geodesic connecting two regular equilibria
is arbitrarily close to a smooth path which minimizes catastrophes. By using this
result and Theorem 3.1, one can construct an algorithm to find the redistribution
of endowments which implements this optimal policy. The idea is the following.

Given an initial economy (p,w), suppose the social planner redistributes en-
dowments across consumers to move the economy toward a target (p/,w’). Suppose
that the redistribution policy is required to fulfill some economic criterion and that
discontinuities of prices must be avoided. A Riemannian metric is constructed on
E(r) in order to embody this criterion. This metric can be regarded as an algo-
rithm to calculate the optimal path (geodesic) 4 : [0,1] — E(r) connecting two
regular equilibria x = (p,w) and y = (p/,w’). The redistribution policy is then
m(3(t)) = ~(t), which represents the optimal choice among the infinite policies
joining w and w’. Finally, observe that this policy, which is optimal from the
perspective of the equilibrium manifold, can appear quite counterintuitive in the
space of the endowments (for example, its self-intersections can be homeomorphic
to intervals).
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