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1. Introduction

An analogous result to Arrow�s Impossibility Theorem (Arrow 1963) in the context of
voting is the Gibbard-Satterthwaite (G-S) Theorem (Gibbard 1973; Satterthwaite 1975).
The interconnection between these two results is a recurrent topic of study in social choice
and voting theory. In this respect, it is known that

(a) one can prove each theorem with the help of the other (see Gibbard 1973; Satterth-
waite 1975; Schmeidler and Sonnenschein 1978),

(b) one can provide a more general result that implies both theorems (e.g., Miller 2009),
and

(c) one can obtain a single proof for both theorems (see Reny 2001).

Moreover, it can be observed that the connections between them are usually obtained
through another result, the Muller-Satterthwaite (M-S) Theorem (Muller and Satterth-
waite 1977). Hence, the latter constitutes a common ground for the former two. In
particular, the fact that the monotonicity axiom in the M-S Theorem is analogous to the
independence axiom in Arrow�s Impossibility Theorem, and on the unrestricted domain
of strict preferences, it is equivalent to the strategy-proofness in the G-S Theorem, allows
one to easily obtain results mentioned above in (a)-(c): see Reny (2001), Miller (2009)
and Chap. 2 in Vohra (2011).

In this paper we �rst provide two proofs of a variant of the M-S Theorem (Theorem
1, Sect. 2) in the baseline case of 2 person, 3 alternatives. Since it is well known that
the M-S Theorem has the G-S Theorem as a corollary (see Reny 2001), we also prove the
G-S Theorem in the baseline case. As Barberà (2011) notes, "the 2 person 3 alternative
case contains all the essential elements of the (G-S) theorem, in a nutshell," in the sense
that it is possible to prove the theorem in the general case by a double induction on the
number of individuals and the number of alternatives, once it is proved in the baseline
case (see Satterthwaite 1975; Schmeidler and Sonnenschein 1978).

The essence of our proofs is to directly verify the result in the baseline case. However,
we reduce the complexity of the problem in two ways: (1) via explicit use of neutrality
(symmetry), and (2) via tying up all reasoning on a monotone social choice function
with full domain to that of a monotone social choice function with a smaller domain of 1
person society. Then, in Section 4 we show that one can easily prove the M-S Theorem
in the general case, once it is proved for the case of 3 alternatives (Proposition 1). Such
extension can be useful in inductive proofs of the M-S Theorem. We then complete the
proof of the theorem by proving it in the decisive case of 3 alternatives (Proposition 2).

In the next section we introduce our main de�nitions and state the theorem to be
proven. Section 3 gives the proofs of the M-S Theorem in the baseline case, while Section
4 shows how one can extend the M-S Theorem with 3 alternatives to the general case of
arbitrary but �nite alternatives. The last section concludes.

2. The preliminaries

Let A = fa1; :::; ang denote the set of alternatives with n 2 N elements and let X
denote the set of strict linear orders (strict rankings) on A. Let there be N individuals
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in the group. A function f : XN ! A is called a social choice function (SCF). A member
x = (x1; :::; xN) of XN is called a pro�le of rankings (or simply a pro�le) and its i0th
component, xi, is called the individual i0s ranking. We say that a SCF f : XN ! A
is Pareto e¢ cient (PE) if whenever alternative a is on top of xi for i = 1; :::; N , then
f(x) = a. It is monotonic (MT) if whenever f(x) = a and for every individual i and
every alternative b the ranking x0i ranks a above b if xi does, then f(x

0) = a. Finally, it is
dictatorial (DT) if there is individual i such that f(x) = a if and only if a is at the top
of xi, and we denote such function as f id, for i = 1; :::; N .

The following result is known as (a variant of) the M-S Theorem (see also Reny 2001):

Theorem 1 If n � 3, a SCF f : XN ! A is PE and MT if and only if it is DT.

3. The proofs for the baseline case

Let us introduce a binary relation Ra1 on X, called as the monotonicity relation w.r.t
a1 on X, de�ned as 8x; y 2 X, xRa1y, i.e. x is related to y according to Ra1, if x; y 2 X
are such that for any alternative aj, if a1 is ranked above aj in x then so is in y. Rai for
i = 2; :::; n are de�ned analogously. Whenever xRaiy, we say y is a successor of x in Rai.
We also introduce a similar binary relation (RNa1) on the full domain of X

N : 8x; y 2 XN ,
xRNa1y if x; y 2 XN are such that for any alternative aj and any individual i = 1; :::; N , if
a1 is ranked above aj in xi, then so is in yi. RNai for i = 2; :::; n are de�ned analogously.

1

Whenever xRNaiy, we say y is a successor of x in R
N
ai
. Note that by de�nition, for any

MT SCF f : XN ! A, xRNaiy implies that if f(x) = ai, then f(y) = ai, for i = 1; :::; n.

RNai for i = 1; :::; n has the following properties:

Lemma 1 For i = 1; :::; n;

(a) 8x; y 2 XN ; xRNaiy if and only if xjRaiyj, for j = 1; :::; N , and

(b) RNai is a preorder (re�exive and transitive) on X
N .

Proof. (a) Both directions of the statement immediately follow from the de�nitions of
Rai and R

N
ai
. (b) Observe that it is easy to verify that Rai is a preorder on X. The result

follows combining this observation with (a).

Lemma 1 (a) allows any reasoning on RNai to be entirely based on Rai, for i = 1; :::; n,
while Lemma 1 (b) allows us to reason recursively.

Let us now assume N = 2 and n = 3. We can code the elements of X as follows:
a1 � a2 � a3 � 123; a1 � a3 � a2 � 132; a2 � a1 � a3 � 213; a2 � a3 � a1 � 231;
a3 � a1 � a2 � 312; a3 � a2 � a1 � 321. Let�s construct the following graph which
represents Ra1:

(213) (�a1)

(321)  ! (231)% &
& %(132) ! (123)

(312)

We call �a1 as "Monotonicity Graph for a1" and note that 8�; � 2 V (�a1) (the set of
vertices), �Ra1� if and only if there is directed path from � to � (we assume that every

1See also the notion of monotonic transformation in Klaus and Bochet (2011).
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node is connected to itself by a directed path). Note that if a node is assigned to a1
under any MT SCF g : X ! A, then all of its successors in �a1 must be assigned to a1.
Similarly, we can create �monotonicity graphs�for a2 and a3:

(123) (�a2)

(312)  ! (132)% &
& %(231) ! (213)

(321)

(231) (�a3)

(123)  ! (213)% &
& %(312) ! (321)

(132)

Proof 1: Let us now prove the M-S Theorem. Let f : X2 ! A be a MT and PE SCF
and for i = 1; 2; 3, let Di denote the set of pro�les such that ai is ranked at the top
of each ranking:

D1 = f(123; 123); (123; 132); (132; 123); (132; 132)g;

D2 = f(213; 213); (213; 231); (231; 213); (231; 231)g;
D3 = f(312; 312); (312; 321); (321; 312); (321; 321)g:

Note that none of the pro�les in D2[D3 can be assigned to a1, by PE. Hence, none
of their predecessors in R2a1 (� is a predecessor of � if �R

2
a1
� and � 6= �) can be

assigned to a1. So, every pro�le in

P (D2 [D3) = f(213; 321); (321; 213); (231; 312); (312; 231); (231; 321); (321; 231)g

needs to be assigned either to a2 or a3. Let f(213; 321) = a3. Then, referring to
R2a3 (to �a3) we conclude that

!1 : f(213; 321) = f(231; 321) = f(231; 312) = f(213; 312) =

= f(123; 312) = f(132; 312) = f(123; 321) = f(132; 321) = a3:

Note that there is a complete symmetry among the elements of A in our renaming
them as a1; a2 and a3: any of the a1; a2; a3 can equally represent any of the three
alternatives in A. This symmetry is often called as the neutrality axiom and it
is implicit in our de�nition of SCF. Because of the symmetry between a3 and a2
(exchanging the roles of a3 and a2), we can conclude that decisions in !1 are one
and the same as the following decisions:

!2 : f(132; 213) = f(123; 213) = f(123; 231) = f(132; 231) =

= f(312; 231) = f(321; 231) = f(312; 213) = f(321; 213) = a2:

Similarly, since there is a symmetry between a3 and a1, they are are also one and
the same as the following decisions:

!3 : f(231; 123) = f(213; 132) = f(213; 123) = f(231; 132) =

= f(321; 132) = f(312; 132) = f(321; 123) = f(312; 123) = a1:
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Hence, once the initial decision is made, all the other decisions follow (recall
that the pro�les in Di are assigned to ai by PE, for i = 1; 2; 3). Alternatively,
let f(213; 321) = a2. Note that f(213; 132) 6= a3, since otherwise referring to
R2a3 we conclude that f(213; 321) = a3, which is a contradiction. Note also that
f(213; 132) 6= a1 since otherwise by the symmetry between a1 and a3, we conclude
that f(231; 312) = a3, which then implies that (referring to R2a3) f(231; 321) = a3.
But (231; 321) is a successor of (213; 321) in R2a2, hence f(231; 321) = a2, which is
a contradiction. So, f(213; 132) = a2. Then referring to R2a2, we can conclude that

'1 : f(213; 321) = f(231; 321) = f(213; 132) = f(213; 123) =

= f(231; 132) = f(231; 123) = f(231; 312) = f(213; 312) = a2:

Because of symmetry, decisions in '1 are one and the same as the following decisions:

'2 : f(123; 312) = f(132; 312) = f(123; 231) = f(123; 213) =

= f(132; 231) = f(132; 213) = f(132; 321) = f(123; 321) = a1

and

'3 : f(321; 132) = f(312; 132) = f(321; 213) = f(321; 231) =

= f(312; 213) = f(312; 231) = f(312; 123) = f(321; 123) = a3:

Hence, there are only two possible assignments, f!1; !2; !3g and f'1; '2; '3g, and
each of them corresponds to a DT social choice function with one of the two indi-
viduals being a dictator. This completes the proof.

Proof 2: Suppose f(213; 321) = a3. Note that (213) has 6 successors in �a3 while (321)
has 2. Since by Lemma 1 (a) any combination of successors of (213) and (321) in
�a3 is a successor of (213; 321) in R

2
a3
, there are 12 = 6 � 2 (including (213; 321))

pro�les to be assigned to a3. By symmetry, then there are 12 pro�les to be assigned
to ai, i = 1; 2. Since X2 has 36 elements, once the initial decision is made all the
other decisions follow i.e., there is a unique function f : X2 ! A which is PE, MT
and f(213; 321) = a3. On the other hand f 2d : X

2 ! A has these properties: it is
PE, MT and f 2d (213; 321) = a3. Hence, f = f

2
d .

Alternatively, suppose f(213; 321) = a2. Then, by the same argument as in Proof
1 we conclude that f(213; 132) = a2. Then, repeating the same argument just used
for the case of f(213; 321) = a3, we conclude that there is a unique PE and MT
function f : X2 ! A such that f(213; 132) = a2. Since f 1d : X

2 ! A has these
properties, we then conclude that f = f 1d . This completes our proof.

Proof 2 for N = 2, n � 3: Consider a pro�le x 2 X2 such that x1 = (a1 � a2 � ::: �
an) and x2 = (a2 � a3 � ::: � an � a1). Let f : X2 ! A be PE and MT. We
claim that f(x) 2 fa1; a2g. Suppose on the contrary that f(x) = aj =2 fa1; a2g.
Then, consider x�1 = (a2 � a1 � a3 � ::: � an). By MT, if f(x) = aj =2 fa1; a2g,
then f(x�1; x2) = aj which then contradicts PE. Hence, the claim is established.
Let f(x) = a1. Since any ranking is a successor of x2 in Ra1, it has n! successors,
and since any ranking with a1 ranked at the top is a successor of x1 in Ra1 , it has
(n � 1)! successors. Then by Lemma 1 (a), any combination of successors of x1
and x2 in Ra1 is a successor of x in R

2
a1
, there are n!(n� 1)! pro�les to be assigned
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to a1 under f . By symmetry, then there are n!(n � 1)! pro�les to be assigned to
ai, i = 2; :::; n. Since X2 has (n!)2 elements, once the initial decision is made all
the other decisions follow. Hence, there is a unique PE and MT f : X2 ! A with
f(x) = a1. But since f 1d has these properties, we conclude that f = f

1
d .

Alternatively, let f(x) = a2. Let x0 2 X2 be such that x01 = x1 = (a1 � a2 � ::: �
an) and x02 = (a2 � a1 � a3 � ::: � an). Since f(x) = a2, f(x0) = a2 by MT.
Consider x00 2 X2 such that x001 = (a1 � a3 � ::: � an � a2) and x002 = x02. We claim
that f(x00) 2 fa1; a2g. Suppose on the contrary f(x00) = aj =2 fa1; a2g. Consider
x�2 = (a1 � a2 � a3 � ::: � an). If f(x00) = aj =2 fa1; a2g, then f(x01; x�2) = aj
by MT, which then contradicts PE. Hence, the claim is established. Note that
f(x00) 6= a1 as otherwise it would imply that f(x0) = a1 by MT. Hence, we conclude
that f(x00) = a2. Then by the same argument as above we can show that there is
a unique PE and MT function with f(x00) = a2, and since f 2d has these properties,
we then conclude that f = f 2d .

4. Su¢ ciency of proving the M-S Theorem for n = 3

The following result shows that it su¢ ces to prove Theorem 1 when n = 3:

Proposition 1 Suppose Theorem 1 holds when n = 3. Then it holds for any �nite n > 3.

Proof. Let n > 3 and let f : XN ! A be a MT and PE SCF. Let A3 = fa1; a2; a3g � A
and let XA3 � XN be the set of all pro�les x 2 XN such that for each xi, i = 1; :::; N ,
the top 3 alternatives of xi are in A3, and for j = 4; :::; n, the j0th top alternative of xi
is aj 2 A. We claim that 8x 2 XA3, f(x) 2 A3. Suppose on the contrary that 9y 2 XA3

such that f(y) = ar with r > 3. By MT this implies that 8x 2 XA3, f(x) = ar which
contradicts PE. Hence, the claim is established.

Let X3 be the set of all strict rankings on A3 and let us de�ne f 3 : XN
3 ! A3 as

8z 2 XN
3 , f

3(z) = f(xz) where xz 2 XA3 is a pro�le such that x
z
i and zi coincide on A3,

i.e. xzi = (zi � a4 � ::: � an), for all i = 1; :::; N . Notice that for each z 2 XN
3 there

is a unique such xz 2 XA3. Combining this with our claim we conclude that, f 3 is a
well de�ned 3 alternative SCF. Moreover, since f is PE and MT, so is f 3. Hence, by our
hypothesis f 3 must be DT.

Without loss of generality we may assume that 1 is the dictator of f 3. Let us then
show that 1 is the dictator of f . Consider z 2 XN

3 such that z1 = (a1 � a2 � a3) and zi =
(a2 � a1 � a3) for i = 2; :::; N . Since 1 is the dictator of f 3, f 3(z) = f(xz) = a1. Now let
x0i = (a2 � a3 � ::: � an � a1) for i = 2; :::; N . We �rst claim that f(xz1; x

0
2; x

z
3; :::; x

z
N) =

a1. Note that f(xz1; x
0
2; x

z
3; :::; x

z
N) 6= a2 as otherwise it would imply that f(xz) = a2 by

MT, and also f(xz1; x
0
2; x

z
3; :::; x

z
N) =2 fa3; :::; ang since if f(xz1; x02; xz3; :::; xzN) = aj for some

j 2 f3; :::; ng, then f(x01; x02; xz3; :::; xzN) = aj where x01 = (a2 � a1 � a3 � ::: � an) by
MT, which then contradicts PE. Hence, f(xz1; x

0
2; x

z
3; :::; x

z
N) = a1.

We can change rankings of individuals 3 to N from xzi to x
0
i, each at a time, and

repeat the same argument to conclude that f(xz1; x
0
2; :::; x

0
N) = a1. Notice that xz1 has

(n � 1)! successors in Ra1, while x0i has n! successors in Ra1. By Lemma 1 (a), then
(xz1; x

0
2; x

0
3; :::; x

0
N) 2 XN has (n � 1)!(n!)N�1 successors in RNa1. Hence, there are (n �

1)!(n!)N�1 pro�les to be assigned to a1 under f . By symmetry, then there are (n �
1)!(n!)N�1 pro�les to be assigned to ai, i = 2; :::; n. Since XN has (n!)N elements, there
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is a unique PE and MT SCF such that f(xz1; x
0
2; :::; x

0
N) = a1. But since f

1
d : X

N ! A
has these properties, we conclude that f = f 1d .

For completeness, let us verify that Theorem 1 holds when n = 3.

Proposition 2 Theorem 1 holds when n = 3.

Proof. We use induction on N . As shown above in Proof 1 and 2, the statement is
true when N = 2. Suppose it is true when N = k � 2 and let us consider the case of
N = k + 1. Let f : Xk+1 ! A be PE and MT SCF. Consider a pro�le x 2 Xk+1 with
x1 = (a1 � a2 � a3) and xi = (a2 � a3 � a1) for i = 2; :::; k + 1. Then, f(x) 6= a3 since
otherwise by MT f(x�) = a3 for x� 2 Xk+1 such that x�1 = (a2 � a1 � a3) and x�i = xi,
i = 2; :::; k + 1, which then contradicts PE. Hence, f(x) 2 fa1; a2g. Suppose f(x) = a1.
Notice that x1 2 X has 2 successors in Ra1 while xi 2 X has 3! successors in Ra1. By
Lemma 1 (a), then x 2 Xk+1 has 2 � (3!)k successors in Rk+1a1

, and there are 2 � (3!)k
many pro�les to be assigned to a1 under f . By symmetry, then there are 2 � (3!)k many
pro�les to be assigned to ai, i = 2; 3. Since Xk+1 has (3!)k+1 elements, there is a unique
f : Xk+1 ! A which is PE, MT and satis�es f(x) = a1. Since f 1d has these properties,
we conclude that f = f 1d .

Alternatively, suppose f(x) = a2. Let us de�ne g : Xk ! A as 8y 2 Xk, g(y) =
f(x1; y2; :::; yk+1), i.e. we �x individual 10s ranking at x1. Note that since f is MT, so
is g. We claim that g is also PE. Notice that when a1 2 A is on top of each ranking yi,
i = 2; :::; k + 1, g(y) = a1, by PE of f . Note also that when a2 2 A is on top of each yi,
i = 2; :::; k + 1, g(y) = a2 by MT. Consider x0 2 Xk+1 such that x01 = (a1 � a3 � a2) and
x0i = (a3 � a2 � a1) for i = 2; :::; k + 1. Then, f(x0) 6= a1 since otherwise f(x) = a1 by
MT, which is a contradiction. Also f(x0) 6= a2 since otherwise f(x��) = a2 for x�� 2 Xk+1

such that x��1 = (a3 � a1 � a2) and x��i = x0i, i = 2; :::; k + 1, which then contradicts PE.
Hence, f(x0) = a3. By MT, this implies that f(x00) = a3 for x00 2 Xk+1 such that x001 = x

0
1

and x00i = (a3 � a1 � a2) for i = 2; :::; k + 1.
Consider x000 2 Xk+1 such that x0001 = x1 = (a1 � a2 � a3) and x000i = x00i , i = 2; :::; k+1.

Then, f(x000) 6= a1 since otherwise f(x00) = a1 by MT, which is a contradiction as we just
concluded that f(x00) = a3. Also f(x000) 6= a2 since otherwise by MT f(x���) = a2 for
x��� 2 Xk+1 such that x���1 = x0001 and x

���
i = (a1 � a3 � a2) for i = 2; :::; k+1, which then

contradicts PE. Hence, we conclude that f(x000) = a3. This implies that, for all y 2 Xk

such that a3 is ranked at the top of each yi, i = 2; :::; k+ 1, g(y) = f(x1; y2:::; yk+1) = a3.
Hence, g : Xk ! A is PE.

Then by our induction hypothesis, g : Xk ! A is DT. Without loss of generality, we
may assume that individual 2 is the dictator of g. We claim that 2 is also the dictator of
f . Consider x~ 2 Xk+1 such that x~2 = (a3 � a2 � a1) and x~i = x1 for i = 1; 3; :::; k + 1.
Then, f(x~) = g(x~2; :::; x

~
k+1) = a3. Repeating the same argument as in the �rst part of

the proof, we can conclude that there is a unique f : Xk+1 ! A which is PE, MT and
f(x~) = a3. Since f 2d has these properties, we conclude that f = f

2
d . This completes our

proof.

5. Final comments

In the �rst part of this paper (Sect. 3), we presented two rather straightforward
proofs of the Muller-Satterthwaite (M-S) Theorem in the baseline case of 2 person and 3
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alternatives. With a slight modi�cation of the set up each approach can prove Arrow�s
Impossibility Theorem in that case. Moreover, in principle it is possible to prove the
M-S Theorem in the general case using the same approach. In order to that, one needs
to investigate more abstract properties of the binary relations introduced above. In
particular, the fact that these relations can be de�ned recursively, starting with the
simplest case of a single individual pro�le, indicates a possibility for such investigation.

In the second part (Sect. 4), we showed how one can extend the special case of the M-
S Theorem with 3 alternatives to the general case of arbitrary but �nite alternatives (in
Proposition 1). Such extension can be relevant for inductive proofs of the M-S Theorem.
In particular, it shows that for such proofs, using double induction on both number of
alternatives and number individuals is unnecessary.

References

Arrow, K.J. (1963) Social Choice and Individual Values, 2nd ed., Wiley: New York.

Barberà, S. (2011) "Strategy-proof social choice" in Handbook of Social Choice and
Welfare, vol. 2, by K.J. Arrow, A.K. Sen and K. Suzumura, Eds., North-Holland:
Amsterdam.

Gibbard, A. (1973) "Manipulation of voting schemes: a general result" Econometrica
41, 587-601.

Klaus, B and O. Bochet (2011) "The relation between monotonicity and strategy-
proofness" to appear in Social Choice and Welfare.

Miller, M.K. (2009) "Social choice theory without Pareto: the pivotal voter approach"
Mathematical Social Sciences 58, 251-255.

Muller, E and M. Satterthwaite (1977) "The equivalence of strong positive association
and strategy proofness" Journal of Economic Theory 14: 412-418.

Reny, P. (2001) "Arrow�s theorem and the Gibbard-Satterthwaite theorem: a uni�ed
approach" Economics Letters 70, 99-105.

Satterthwaite, M. (1975) "Strategy-proofness and Arrow�s conditions: existence and cor-
respondence theorems for voting procedures and social welfare functions" Journal
of Economic Theory 10, 187-217.

Schmeidler, D and H. Sonnenschein (1978) "Two proofs of the Gibbard-Satterthwaite
theorem on the possibility of a strategy-proof social choice function" in Decision
Theory and Social Ethics by H.W. Gottinger and W. Leinfellner, Eds., D.Reidel:
Dordrecht.

Vohra, R.V. (2011) Mechanism Design: A Linear Programming Approach, Cambridge
University Press: Cambridge, MA.

1441


