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1 Introduction

In the estimation of dynamic panel data models, the first-difference GMM (DIF-GMM)
estimator by Arellano and Bond (1991) and the system GMM (SYS-GMM) estimator by
Arellano and Bover (1995) and Blundell and Bond (1998) have been used widely. The latter
estimator exploits moment conditions additional to those of the former estimator. The
validity of these additional moment conditions, which are referred to as the level moment
conditions, requires mean-stationarity of initial observations. Although the level moment
conditions lead the SYS-GMM estimator to better finite-sample properties than the DIF-
GMM estimator, the violation of the level conditions results in inconsistency of the SYS-
GMM estimator. As Roodman (2009) cautions, there is a risk of underappreciating the
initial condition. The standard way to test these additional moment conditions is to take a
difference between the Sargan test statistics of the SYS-GMM and DIF-GMM estimators.

However, little is known about the finite sample properties of the test, especially the
power properties.1 Furthermore, the test statistic can be negative in finite samples even
though it has an asymptotic χ2 distribution. Indeed, a nontrivial portion of Monte Carlo
simulations by Blundell and Bond (2000) resulted in negative values.

This paper considers a modification of the test statistic to avoid a negative value. Monte
Carlo simulations illustrate that the modified test performs better than the conventional test
in finite samples.

2 Model

Consider an AR(1) panel data model:

yi,t = αyi,t−1 + ui,t, i = 1, . . . , N ; t = 2, . . . , T,

where |α| < 1 and ui,t is an unobservable error: ui,t = ηi + εi,t. Assume that ηi ∼ iid(0, σ2

η)
and εi,t ∼ iid(0, σ2

ε). The initial observation is generated as:

yi,1 =
δ

1− α
ηi + ωi,1, i = 1, . . . , N,

where δ is a constant and ωi,1 ∼ iid(0, σ2

ω). The DIF-GMM estimator exploits the (T −
1)(T − 2)/2 moment conditions:

E (Zdi
′∆ui) = 0, (1)

where

Zdi =




yi,1 0 0 . . . 0 . . . 0
0 yi,1 yi,2 . . . 0 . . . 0
· · · · · . . . ·
0 0 0 . . . yi,1 . . . yi,T−2


 and ∆ui =




∆ui,3

...
∆ui,T


 .

1In dynamic panel data models, Bowsher (2002) examines the power of the Sargan test in the presence of
serial correlation, and Dahlberg et al. (2008) examine it with measurement errors in data. However, neither
of them considers the test specific to the level moment conditions. Only Roodman (2009) pays special
attentions to the level moment conditions.
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These moment conditions do not require any restriction on δ.
If the initial observation is mean-stationary2 such that δ = 1, an additional (T − 2)

moment conditions are available:
E (Zli

′ui) = 0,

where

Zli =




∆yi,2 . . . 0
...

. . .
...

0 . . . ∆yi,T−1


 and ui =




ui,3

...
ui,T


 .

These additional conditions are referred to as the level moment conditions. The SYS-GMM
estimator exploits these conditions in addition to (1). Defining

Zsi =

(
Zdi 0
0 Zli

)
and νi =

(
∆ui

ui

)
,

the moment conditions in the SYS-GMM estimator are expressed as

E (Zsi
′νi) = E

(
Zdi

′∆ui

Zli
′ui

)
= 0 (2)

It is well-documented that, in finite samples, the SYS-GMM estimator performs better
than the DIF-GMM estimator, which suffers from the weak instruments problem. Therefore,
it is becoming more popular in empirical applications. If δ 6= 1, however, the level moment
conditions are invalid, and it leads the SYS-GMM estimator to be inconsistent although the
DIF-GMM estimator remains consistent. Therefore, it is important to test the validity of
the level moment conditions.

3 The Overidentifying Restrictions Tests

As both the DIF-GMM and SYS-GMM estimators are overidentified, the validity of the
moment conditions can be tested. The standard test is the Sargan test. The test statistic
for the DIF-GMM estimator is given by

Sard(α̂d1) =
1

N
∆̂u′ZdŜd(α̂d1)

−1

Zd
′∆̂u,

where Zd is the matrix stacking individuals’ instrument matrices and ∆̂u is the vector stack-
ing individuals’ residual vectors from a two-step DIF-GMM estimator. Ŝd(α̂d1) is the consis-
tent estimator of the covariance matrix of the sample moments in the DIF-GMM estimator,
which is given by

Ŝd(α̂d1) =
1

N

N∑

i

Z ′

di∆̂ui∆̂ui
′Zdi, (3)

2If σ2

ω = σ2

ε/(1− α2), the series is covariance-stationary. The SYS-GMM estimator does not require
covariance-stationarity.
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where ∆̂ui is the residual vector from a one-step DIF-GMM estimator, α̂d1. Similarly, the
Sargan test statistic for the SYS-GMM estimator is given by

Sars(α̂s1) =
1

N
ν̂ ′ZsŜs(α̂s1)

−1

Zs
′ν̂,

where Ŝs1 is the consistently estimated covariance of the sample moments in the SYS-GMM
estimator. It is estimated by

Ŝs(α̂s1) =
1

N

N∑

i

Zsi
′ν̂iν̂i

′Zsi, (4)

where ν̂i is the residual vector from a one-step SYS-GMM estimator, α̂s1.
In GMM estimation, the subset of the moment conditions can be tested by taking a

difference of the Sargan test statistics from two GMM estimators: the one using the whole
set of the moment conditions and the other excluding the moment conditions to be tested.
As it is clear from (2), the DIF-GMM estimator exploits the subset of the moment conditions
in the SYS-GMM estimator; the level moment conditions are excluded. The test is called a
Difference-Sargan (Dif-Sar) test and is calculated as

Dif-Sar = Sars(α̂s1)− Sard(α̂d1).

This test is specific to the validity of the level moment conditions. It has an asymptotic χ2

distribution with degrees of freedom equal to the number of the level moment conditions,
(T − 2). This is the test reported conventionally.

However, in finite samples, this test statistic can be negative, especially when the series is
persistent (Blundell and Bond, 2000). Although it has not been considered in the literature,
it is possible to avoid this problem. To obtain a nonnegative test statistic, use the same
one-step estimator to estimate the covariance matrices of the moments of the DIF- and SYS-
GMM estimators. Then, take a difference of Sargan test statistics from the same one-step
estimator, whether this estimator is α̂s1 or α̂d1. Thus, let C(α̂) denote the difference Sargan
test from a particular one-step estimator α̂:

C(α̂s1) = Sars(α̂s1)− Sard(α̂s1)

C(α̂d1) = Sars(α̂d1)− Sard(α̂d1).

The point here is to use the same estimator α̂ to estimate the covariance matrices Ŝd(α̂) and
Ŝs(α̂) in equations (3) and (4).

Asymptotically, Dif-Sar, C(α̂d1), and C(α̂s1) test statistics are equivalent and have the
same limiting χ2 distribution. However, in finite samples, the values of these tests differ,
and Dif-Sar test statistic can be negative while C(α̂d1) and C(α̂s1) cannot be.

3

Even though it is straightforward to make a test statistic nonnegative, the applied lit-
erature unfortunately relies exclusively on the Dif-Sar test. The question is how the test

3 To see why, notice that Ŝd(α̂) is a submatrix of Ŝs(α̂). It is well-known that the use of the submatrix
guarantees nonnegativity. See, for example, Hayashi (2000).
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Table 1: Relative Frequencies of Rejection of the Level Moment Conditions: α = 0.8

α̂s2 α̂d1 Dif-Sar C(α̂d) C(α̂s) C(α)
δ = 0

k = 0 1.0547 (0.0148) 0.7849 (0.0427) 0.994 0.999 0.999 0.999
2 1.0143 (0.0129) 0.7482 (0.0823) 0.729 0.788 0.876 0.759
5 0.9593 (0.0161) 0.6829 (0.1278) 0.268 0.657 0.464 0.530
10 0.8847 (0.0390) 0.6587 (0.1300) 0.147 0.406 0.252 0.265
20 0.8263 (0.0515) 0.7015 (0.1075) 0.080 0.166 0.132 0.085
40 0.8206 (0.0512) 0.7100 (0.1044) 0.088 0.144 0.133 0.095

δ = 2
k = 0 0.9248 (0.0065) 0.7961 (0.0207) 0.990 1.000 0.997 1.000

2 0.9501 (0.0100) 0.7919 (0.0301) 0.959 0.993 0.976 0.996
5 0.9770 (0.0276) 0.7802 (0.0476) 0.935 0.955 0.966 0.964
10 0.8409 (0.0702) 0.7510 (0.0780) 0.468 0.328 0.518 0.387
20 0.8168 (0.0526) 0.7118 (0.1016) 0.099 0.145 0.150 0.082
40 0.8205 (0.0512) 0.7101 (0.1043) 0.088 0.143 0.134 0.095

Note: The first and second column show the means of two-step SYS-GMM estimates and of one-
step DIF-GMM estimates, respectively, with the standard deviations in round brackets. The other
columns show relative rejection frequencies of each test. When a test statistic is negative, the
decision is non-rejection. The decision of rejection is at the nominal size of 5%. For the parameter
values, see the text.

properties vary across the different test statistics. To investigate this issue, I conduct Monte
Carlo simulations.

4 Simulation

In this Monte Carlo study, I consider two values of δ that makes the series mean-nonstationary:
δ = 0 or 2. I also discard the first k periods of the series. Unless k = 0, the initial observation
is different from the actual initial starting point of the series. If k is sufficiently large, the
series converges to its stationary level so that the initial condition becomes valid. The values
of k are 0, 2, 5, 10, 20, and 40. I fix the number of the observed periods at T = 8. The
problems of the GMM estimators in a dynamic panel data model often arise when the series
is persistent. Thus, I set α = 0.8. For comparison, I also simulate with α = 0.4. The error
terms are generated as ηi ∼ iidN(0, 1), εi,t ∼ iidN(0, 1), and ωi,1 ∼ iidN (0, σ2

ε/(1− α2)).
The number of individuals is N = 200. For each combination of the parameters, replication
is done 2,000 times.4

Table 1 summarizes the results.5 As the first column shows, the invalid initial condition
δ 6= 1 causes biases in the SYS-GMM estimator. The biases become gradually smaller as
k increases in the case where δ = 0. If δ = 2, the biases intially increase with k but
diminish when k = 10. When k = 20 and k = 40, the biases essentially disappear. It is
long enough for the series to converge to its stationary level, and initial observations satisfy

4All calculations are done with MATLAB using the same random number generating sequences for each
setting. I also simulate with T = 8, N = 400 and different values for σ2

ε : σ
2

ε = 1/4, 1/2, 1, 2, 4. σ2

ω is always
set to σ2

ω = σ2

ε/(1− α2).
5 Other results are available upon request.
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Figure 1: The Size-Power Plots: α = 0.8

(a) δ = 0 and k = 10
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(b) δ = 2 and k = 10
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mean-stationarity. However, when k is small, the effect of the invalid initial condition still
remains.

The last four columns show the rejection frequencies of each test. For comparison, I also
calculate an infeasible test statistic C(α), which uses a true parameter α to estimate the
covariance of the moments. The decision to reject is made at the nominal size of 5%. The
Dif-Sar test statistic takes on negative values at times while the C test statistic does not by
its design. Although both tests can usually reject the invalid moment conditions at k = 0,
their power declines rapidly as k increases. When δ = 0 and k = 5, the power of the Dif-Sar
test is remarkably low although the bias is sizable.

The C tests appear to be more powerful than the Dif-Sar test for every case except
when δ = 2 and k = 10. When the test is modified to be nonnegative, it gains nominal
power. Note, however, that the test is oversized. When k = 40, the level moment condi-
tions are essentially valid, but the relative rejection frequencies are more than the nominal
size of 5%. The test statistics C(α̂d1) and C(α̂s1) have greater size distortions. To com-
pare the power appropriately by adjusting size, I compare the size-power plots, following
Davidson and MacKinnon (1998). Actual size and power are measured as relative rejection
frequencies under the null, δ = 1, and under the alternative, δ 6= 1, respectively. As shown in
Figure 1, even after size is adjusted, C(α̂d1) remains more powerful when δ = 0 and k = 10.
However, C(α̂d1) is the least powerful when δ = 2 and k = 10.

The results that the tests perform very differently from one another may be due to
the fact that one-step DIF-GMM estimators are not estimated accurately because of the
weak instruments problem. The second column in Table 1 shows the DIF-GMM estimators
actually are biased downward. Different initial conditions have impacts on the behavior of
the DIF-GMM estimators (Hayakawa, 2009). It results in the differences of the test statistics.

When α is smaller so that the series is not persistent and the weak instruments problem is
not serious, there is little difference across the tests. Table 2 shows the simulation results in
the case of α = 0.4. Note that the series converges to its mean-stationary level very quickly
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Table 2: Relative Frequencies of Rejection of the Level Moment Conditions: α = 0.4

α̂s2 α̂d1 Dif-Sar C(α̂d) C(α̂s) C(α)
δ = 0

k = 0 0.6222 (0.0498) 0.3824 (0.0538) 1.000 1.000 1.000 1.000
2 0.4381 (0.0468) 0.3816 (0.0574) 0.396 0.314 0.442 0.356
5 0.4063 (0.0406) 0.3848 (0.0525) 0.075 0.076 0.082 0.077

δ = 2
k = 0 0.4970 (0.0335) 0.3934 (0.0319) 1.000 1.000 1.000 1.000

2 0.3996 (0.0404) 0.3861 (0.0495) 0.398 0.415 0.400 0.439
5 0.4038 (0.0401) 0.3851 (0.0520) 0.072 0.074 0.081 0.081

Note: See Table 1. The figures for k = 10, 20, 40 are suppressed here since they are almost the same
as those for k = 5.

Figure 2: The Size-Power Plots: α = 0.4

(a) δ = 0 and k = 2
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(b) δ = 2 and k = 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Actual Size

P
ow

er
Size−Power Plot

 

 

Dif−Sar
C(α

d1
)

C(α
s1

)

C(α)

since α is small. When k = 5, there is essentially no bias in α̂s2. Even though there seems to
be no bias in α̂s2, the level moment conditions are rejected by all the tests rather frequently
when k = 2 for the initial condition δ = 2. Figure 2 shows the size-plots. The curves of all
the tests overlap. Unlike the results in the case where α = 0.8, the way of calculating the
test statistics does not yield significant differences. In the light of these simulation results,
we should be careful about the inference on the validity of the level moment conditions,
especially when the series is persistent and the weak instruments problem is severe.

5 Application to Data

As a last exercise, I investigate how different test statistics lead to different conclusions, using
U.K. manufacturing company data that Arellano and Bond (1991) and Blundell and Bond
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Table 3: The Test Statistics of the Overidentifying Restrictions Tests

Sard(α̂d1) Sard(α̂s1) Sars(α̂d1) Sars(α̂s1) Dif-Sar C(α̂d1) C(α̂s1)
(1) (2) (3) (4) =(4)-(1) =(3)-(1) =(4)-(2)

The Sample Period: 1976 -1984
Test value 88.80 87.46 117.82 112.92 24.13 29.03 25.46
d.f. (79) (79) (100) (100) (21) (21) (21)
p-value [0.21] [0.24] [0.11] [0.18] [0.29] [0.11] [0.23]

The Sample Period: 1979 - 1984
Test value 13.96 19.81 22.25 39.89 25.93 8.29 20.08
d.f. (25) (25) (37) (37) (12) (12) (12)
p-value [0.96] [0.76] [0.97] [0.34] [0.01] [0.76] [0.07]

Note: Degrees of freedom and p-values are in round brackets and square brackets, respectively.

(1998) use.6 They consider the estimation of a dynamic labor demand equation. Following
Blundell and Bond (1998), the estimation equation is:

ni,t = α1ni,t−1 + α2wi,t + α3wi,t−1 + α4ki,t + α5ki,t−1 + λt + ηi + εi,t,

where ni,t is the log of employment in firm i in year t, wi,t is the log of the wage rate, and
ki,t is the log of the capital stock. Blundell and Bond (1998) treat wages and capital as
endogenous variables, and ∆wi,t−1 and ∆ki,t−1 as well as ∆ni,t−1 are used as the instruments
in the level equations. Therefore, there are 3 × (T − 2) level moment conditions in total.
They consider one sample from 1976 to 1984 and its subsample from 1979 to 1984.

Table 3 shows the results. It only reports the test statistics and omits the estimates of
the coefficients to save space.7 In the sample of 1976 to 1984, none of the tests reject the
validity of the level moment conditions at conventional levels of significance even though
C(α̂d1) is only marginally insignificant. However, the tests show much difference results in
the sample of 1979 to 1984. Based on Dif-Sar and C(α̂s1), the validity of the level moment
conditions can be rejected while it C(α̂d1) does not reject it. Asymptotic theory does not
provide guidance on which test statistic we can rely on.

6 Conclusion

Since the SYS-GMM estimator exploits the level moment conditions in addition to the mo-
ment conditions of the DIF-GMM estimator, there is a way to test these specific conditions.
Conventionally, the test statistic is calculated as the difference between the Sargan tests of
the SYS-GMM and DIF-GMM estimators, where the covariance matrices of the moments
are separately estimated. In finite samples, this test statistic can be negative. A relatively
straightforward modification can make the test statistic nonnegative.

6 The data are taken from Stata’s online data archive.
7 Note that only the DIF-GMM estimator for the sample 1976 - 1984 is replicated exactly. The reason

their SYS-GMM estimate is not exactly the same as mine is because Blundell and Bond (1998) use a different
weighting matrix in one-step SYS-GMM estimation. I use the weighting matrix that is now commonly used.
The reason for the difference in results for the 1979-1984 sample is not clear; Stata’s built-in command and
my MATLAB program produce an identical result that differs from the result of Blundell and Bond (1998).
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The simulation results show that when modified, the test gains power, but not in all
circumstances. The application to real data shows that the test calculated in different ways
actually results in different rejection decisions. Based on this finding, I suggest that in
application, the test statistic on the level moment conditions be calculated in the modified
ways as well as the conventional way in order to check whether all the ways lead to the same
decisions. In future research, I will explore sources of the differences in these forms with a
more rigorous approach.
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