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1 Introduction

Time series methods, whether parametric or nonparametric, has established a broad field of knowl-

edge whose application stretches over both natural and social sciences. Within this valuable area,

a fast growing research gave rise to important developments enriching the use of time series econo-

metrics in empirical applications. Along this progress, we continously observe some theoretical and

empirical findings pertaining to long memory concepts. Surprisingly, the notion of long memory

has never been completely agreed upon. However, statisticians unanimously argue that long mem-

ory or long range dependence means that observations far away from each other are still strongly

correlated. Accordingly, correlations of long memory processes decay slowly with a hyperbolic rate.

Also, long range dependence implies that the present information has a persistent impact on future

counts. Furthermore, the presence of long memory dynamics cause nonlinear dependence in the

first moment of the distribution and hence acts as a potentially predictable component in the series

dynamics. Readers are referred to Granger and Joyeux (1980) and Hosking (1981) for the main

theoretical contributions.

Nonlinearity is another key property that coexists with long memory. A natural approach

to modeling economic time series with nonlinear models is used to define different states of the

world or regimes, and to allow for the possibility that the dynamic behavior of economic variables

depends on the regime that occurs at any given point in time. However, there are two main regime

switching models: the so-called Smooth Transition Regression model (STR model) and the popular

Markov-Switching model proposed by Hamilton (1989).

Several studies have explored the two key properties of economic and financial time series,

namely long-memory and nonlinear properties. Indeed, the theory recently proposed what can

be called "nonlinear long-memory" models (see van Dijk et al. 2002, and Ajmi et al. 2008).

Subsequently, fractionally integrated smooth transition autoregressive (FISTAR) models have

also been proposed (see, inter alia, van Dijk et al. 2002, and Smallwood 2005). van Dijk et al.

(2002) present the modelling cycles for specifying these models combining the concepts of fractional

integration and smooth transition nonlinearity for the US unemployment rate.

Our work fits in the above-mentioned field of research. We propose an extension of the Bi-

parameter smooth transition autoregressive model (BSTARmodel) proposed by Siliverstovs (2005)

as a generalization of the LSTR2 model suggested earlier in Teräsvirta (1998). The BSTAR

model suggested a Bi-parameter transition function having two slopes and two threshold parameters

allowing for different transition speeds between middle and outer regimes. More specifically, we

introduce a new model; the fractionally integrated BSTAR model (FI −BSTAR model), able to

allow both for structural change, as described by Siliverstovs (2005) in his BSTAR model and used

by Ajmi and El Montasser (2012) in their SEA − BSTAR model, and long memory properties

inspired from the fractional integrated STAR model (FI − STAR) proposed by van Dijk et al.

(2002).

Then, the paper is organized as follows. In section 2, we introduce the fractionally integrated

Bi-parameter smooth transition autoregressive model (FI−BSTAR). In section 3, we empirically

specify our FI −BSTAR model based on the method proposed by Teräsvirta (1994) for the basic

STAR model. In section 4, the model is empirically fitted to monthly growth rates of the American

producer price index. Finally, section 5 concludes. The appendix gives some derivation details.
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2 The fractionally integrated BSTAR model

The fractionally integrated Bi-parameter smooth transition autoregressive model (FI −BSTAR)

is an extension of BSTAR introduced by Siliverstovs (2005). Our modification consists in adding

a fractional integration parameter, i.e, (see Granger and Joyeux 1980) to have a model able to

describe long memory and asymmetric nonlinearity in time series.

The long memory BSTAR model is given by:

(1− L)d yt = xt (1)

with

xt = φ0 +

p∑

i=1

φixt−i +

(

θ0 +

p∑

i=1

θixt−i

)

× F (γ1, γ2, c1, c2; yt−z) + εt (2)

with d is the fractional integration degree of the process. L is the backshift operator such that

Lyt = yt−1. φ =
(
φ0, · · · , φp

)′
and θ = (θ0, · · · , θp)

′

are autoregressive parameters, respectively, in

the first and second regime and εt ∼ NID
(
0, σ2

)
. F (γ1, γ2, c1, c2; yt−z) is a Bi-parameter transition

function characterized by the asymmetric transition function which implies different local dynamics

in the neighborhood of the respective location parameters, which is written as follows:

F (γ1, γ2, c1, c2; yt−z) =
exp [−γ1 (yt−z − c1)] + exp [γ2 (yt−z − c2)]

1 + exp [−γ1 (yt−z − c1)] + exp [γ2 (yt−z − c2)]
γ1 > 0, γ2 > 0, c1 < c2

γ1 and γ2 are two slope parameters, c1 and c2 are two threshold parameters and yt−z is the

transition variable. This function is a generalization of the LSTR2 model (Terasvirta 1998) and

the AESTAR model (Anderson 1997) and guarantees asymmetric transition speed from the outer-

lower regime to the middle and from the middle to the outer-higher regime. If γ1 = γ2 = γ, the

Bi-parameter transition function closely approximates the LSTR2 transition function, mainly for

large values of the slope parameter. When γ1 −→ ∞ and γ2 −→ ∞, F (γ1, γ2, c1, c2; yt−z) −→ 0

for c1 ≤ yt−z ≤ c2 and F (γ1, γ2, c1, c2; yt−z) −→ 1 otherwise1.

3 The empirical specification of the fractionally integrated BSTAR

model

The empirical specification of our fractionally integrated BSTAR is based on the strategy proposed

by Granger (1993), i.e., a “specific-to-general” procedure specific to nonlinear time series models.

We extend the empirical procedure used by Terräsvirta (1994) for STAR models, van Dijk et al.

(2002) for FISTAR models and Siliverstovs (2005) for BSTAR models to elaborate an empirical

specification for fractionally integrated BSTAR models.

The specification of FI −BSTAR models consists of the following steps:

1. Specify an appropriate autoregressive order p for a ARFI model using the BIC criterion.

1For more details, see Siliverstovs (2005)
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2. Test the null hypothesis of linearity against the alternative of Long memory BSTAR nonlin-

earity and select the appropriate transition variables.

3. Estimate the parameters of our FI −BSTAR model.

4. Evaluate the model using diagnostic tests.

3.1 Nonlinearity test

Having specified AR(p) for a given time series, we proceed by testing nonlinearity using a redefined

transition function F ∗t (.) = Ft (.)− 2/3.
2

The model presented in equations (1) and (2) is linear when the slope parameters in both

transition functions are equal to zero, i.e., H0 : γ1 = γ2 = 0. We clearly see that our model in

equation (1) is not identified under the null hypothesis. For circumventing this problem, we replace

the transition functions F ∗t (.) in equations (1) and (2) by their Taylor expansion around the point

γ1 = γ2 = 0 as proposed by Luukkonen et al. (1988) .

After substituting the first-order Taylor series approximation for F ∗t (.) in equation (1) and (2)

and rearranging terms, we get the auxiliary regression:

xt = α0 + α
′

1wt + α
′

2wtyt−z + et (3)

where α0 is a constant, wt = (xt−1, ..., xt−p) and et is the residual terms such that underH0, et = εt.

As noted by Luukkonen et al. (1988), the nonlinearity LM test based on auxiliary regression

(3) is powerless in situations where only the intercept is different across regimes. To remedy this

problem, Luukonen et al (1988) suggest a higher-order Taylor expansion.

Replacing the transition function F ∗t (.) with its second-order Taylor approximation yields the

following auxiliary regression model

xt = α0 + α
′

1wt + α
′

2wtyt−z + α
′

3wty
2
t−z + et (4)

where α0, et and wt are presented above.

By assuming the normal distribution of errors, the conditional log-likelihood for observation t

is written as:

ln lt = −
1

2
ln (2π)−

1

2
ln
(
σ2
)
−

e2t
2σ2

Under the linearity hypothesis H0, the remaining partial derivatives are given by:

∂ ln lt
∂αi

∣∣∣∣
H0

=
1

σ2
ε̂twty

i
t−z, i = 0, 1, 2.

∂ ln lt
∂d

∣∣∣∣
H0

= −
1

σ2
ε̂t

t−1∑

j=1

ε̂t−j
j

The LM test based on regression (4) is conducted through the following steps:

1. Estimate the ARFI model and we calculate the residuals ε̂t and the sum of squared residuals

SSR0 =
∑T
t=1 ε̂2t .

2F ∗t (.) takes a zero under the null hypothesis of linearity.

758



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 755-765

2. Estimate the auxiliary regression of ε̂t on wty
i
t−z and −

∑t−1
j=1

ε̂t−j
j
, i = 0, 1, 2 and compute

the sum of squared residuals from this regression SSR1 =
∑T
t=1 ê2t .

3. Calculate the LM statistic as:

LM =
(SSR0 − SSR1) /df1

SSR1/df2
� F (df1, df2)

with df1 = 2p and df2 = T − 3p− 1.

3.2 Estimation

When the transition variable is selected from the nonlinearity test, the next stage of specification

procedure consists in estimating the parameters in the fractionally integrated BSTAR models.

Our FI − BSTAR is estimated using the maximum likelihood method. The numerical solu-

tion to the iterative estimation procedure can be obtained using Berndt, Hall, Hall and Hausman

(1974) (BHHH) algorithm. The BHHH is implemented using the analytical derivatives of the

corresponding likelihood functions.

Assuming the normality of the error term, the log-likelihood of the model for one observation

is:

ln lt = −
1

2
ln (2π)−

1

2
ln
(
σ2
)
−

e2t
2σ2

, t = 1, · · · , T.

where et = xt−φ0−
∑p
i=1 φixt−i− (θ0 +

∑p
i=1 θixt−i)×F (γ1, γ2, c1, c2; yt−z) for the FI−BSTAR

in equation (1) and (2).

The partial derivatives of the log-likelihood function necessary to calculate the BHHH approx-

imation to the information matrix, with respect to the FI − BSTAR model in equation (1) and

(2), are presented in Appendix 1.

3.3 Misspecification Test

After testing nonlinearity and estimating the parameters, the next step consists in evaluating the

fitted FI −BSTAR by testing the residuals serial correlation.

In this section, we present the LM approach for testing the serial correlation for a fractionally

integrated BSTAR based on Eirtheim and Terräsvirta’s (1996) misspecification of STAR models.

The FI −BSTAR in equation (1) is given by:

xt = H (wt,Ψ) + εt

with H (wt,Ψ) is the skeleton of the model defined by φ0 +
∑p
i=1 φixt−i + (θ0 +

∑p
i=1 θixt−i) ×

Ft (γ1, γ2, c1, c2; yt−z) and Ψ =
(
φ
′

, θ
′

, γ1, γ2, c1, c2, d
)′

.

The no residual correlation LM test for FI −BSTAR is given by these steps:

1. Estimate the FI − BSTAR in equation (1) and (2) and calculate the residuals ε̂t and the

sum of squared residuals SSR0 =
∑T
t=1 ε̂

2
t .
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2. Regress ε̂t on (ε̂t−1, · · · , ε̂t−q)
′

and ∂H
(
wt, Ψ̂

)
/∂Ψ and compute the sum of squared residuals

from this regression SSR with q as the serial dependence order3.

3. Calculate the LM statistic as:

LM =
(SSR0 − SSR) /q

SSR/T − n− q
� F (q, T − n− q)

with n = 2p+ 7.

4 Empirical Application

4.1 Data

This study makes use of the growth rates of the American producer price index, displayed in Figure

1, as an empirical illustration of the suggested model. In this paper we consider seasonally adjusted

monthly data covering the period from 1947:4 to 2011:5.
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Figure 1: Monthly growth rate of the American producer price index.

3The gradients ∂H
(
Dt, xt, Ψ̂

)
/∂Ψ are presented in Appendix 2.
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4.2 Empirical Specification

4.2.1 Nonlinearity Test

Since these models are based on autoregressive structures, the first problem we face in searching

for the appropriate econometric specification is to select the right lag structure. Then, we fit an

ARFI(p) model assuming that the selected lag order p is the same in both regimes of the nonlinear

model. We choose an autoregressive order equal to 9 from a set of candidate values ranging from

1 to 10.

The next step consists in testing whether a nonlinear model will be appropriate for this series,

i.e., testing linearity against FIBSTAR. Table 1 displays the results of the linearity test. Using an

LM test, the null hypothesis of linearity is actually rejected for all transition variables (yt−z) from

delay 1 to 9 except for d = 3. As a practical approach, we choose the delay parameter in order to

minimize the p-value. The results indicate that d = 4 is the appropriate choice for the delay of the

transition variable.

Table 1: LM-type test of nonlinearity

Transition variables p-values

yt−1 1.581× 10−9

yt−2 1.5731× 10−4

yt−3 0.1626

yt−4 1.1422× 10−9

yt−5 5.6677× 10−7

yt−6 0.0016

yt−7 0.0060

yt−8 4.8989× 10−4

yt−9 0.0401

4.2.2 Estimation

After having rejected a linear model against a nonlinear FI − BSTAR model using an LM-type

test, we proceed now with estimating the long memory BSTAR model using a maximum likelihood

method. The estimation results are reported in Table 2.

Table 2 shows that most of the coefficients are statistically significant in the linear and nonlinear

part of the long memory BSTAR model. The estimated fractional integration parameter d̂ is

equal to 0.1949 and significant at the 5% level. This indicates a strong evidence of long memory.

Furthermore, all transition function parameters are significant except for the first slope parameter.

Moreover, the transition is smooth (γ̂2 = 0.6128) around the neighborhood of the upper location

parameter c2.
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Table 2: Summary of estimated FI-BSTAR model

Parameters Estimates t-statistic

d 0.1949* (2.462)

c1 -0.0247* (-2.215)

γ1 0.0763 (1.0102)

c2 0.0213** (9.8824)

γ2 0.6128* (2.3924)

φ0 -0.0169* (-2.533)

φ1 -0.2313 (-0.817)

φ2 0.7878** (4.2109)

φ3 -0.6938** (-4.420)

φ4 -0.1215** (-4.197)

φ5 1.4165** (10.6749)

φ6 0.9062** (9.0448)

φ7 0.1893 (1.071)

φ8 0.0461 (0.5619)

φ9 0.3297** (3.0102)

θ0 0.0327* (2.2385)

θ1 0.1706 (0.3194)

θ2 -1.4435** (-5.8001)

θ3 1.1064** (4.9826)

θ4 -0.0778 (-0.6145)

θ5 -2.5786** (-33.7635)

θ6 -1.5727** (-5.5029)

θ7 -0.3144 (-0.9038)

θ8 -0.0118 (-0.0787)

θ9 -0.4564** (-2.6641)

Note: **,* indicate respectively that the coefficient is

significant at the 1% and 5%, levels.

4.2.3 Diagnostic

The diagnostic of the estimated model is based on the properties of the obtained residuals. Three

different tests are used to this aim: Lilliefors normality test4, the residuals autocorrelation test as

described above and a test for an ARCH effect.

Table 3 presents the different diagnostic results for our FI − BSTAR model. Lilliefors test

statistics shows that we cannot reject the normality hypothesis at 5%. The residuals autocorrela-

tion test based on LM statistics for long memory BSTAR model provides strong evidence for no

residuals autocorrelation. Additionally, we elaborate an ARCH test for the autoregressive condi-

tional heteroskedasticity in the residuals. As the no-ARCH hypothesis is not rejected, this leads

4The Lilliefors test of normality is used because it is more powerful than other procedures for a wide range of

abnormal conditions (see Abdi and Molin 2007).
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us to assume a constant conditional variance in error processes.

Table 3: Misspecification tests for estimated FI-BSTAR model

Tests p− values

Lilliefors test 0.162

LMSC(1) 0.436

LMSC(4) 0.561

LMSC(8) 0.383

ARCH(1) 0.183

ARCH(2) 0.242

ARCH(8) 0.764

Note: The Lilliefors is the normal-

ity test of the residuals. LMSC(q)

denotes the LM test of no serial

correlation in residuals up to order

q and ARCH(q) is the LM test

of no autoregressive conditional het-

eroscedasticity up to order q.

5 Conclusion

In this paper, we introduced the fractionally integrated Bi-parameter smooth transition model (FI−

BSTAR model). The FI−BSTAR model allowed for regime switching based on the bi-parameter

transition function and long memory behaviours. We have used the specific to general procedure

to empirically specify the fractionally integrated BSTAR model. As an empirical application, the

FI −BSTAR model is fitted to the growth rate of the American producer price index time series

and the obtained results corroborate a strong evidence of this type of nonlinearity.
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Appendix 1

Let’s recall that the FI −BSTAR(p) model is defined as:

(1− L)d yt = xt

with

xt = φ0 +

p∑

i=1

φixt−i +

(

θ0 +

p∑

i=1

θixt−i

)

× F (γ1, γ2, c1, c2; yt−z) + εt

where εt ∼ NID
(
0, σ2

)
,

F (γ1, γ2, c1, c2; yt−z) =
exp

[
−
γ1(yt−z−c1)

σF

]
+ exp

[
γ2(yt−z−c2)

σF

]

1 + exp
[
−
γ1(yt−z−c1)

σF

]
+ exp

[
γ2(yt−z−c2)

σF

]

γ1 > 0, γ2 > 0, c1 < c2
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All parameters of the FI−BSTAR are presented above except σF which is the sample deviation

of the transition variables suggested by Terräsvirta (1994) to standardize the transition variable.

The partial derivatives of log-likelihood function with respect to the FI −BSTAR model are:

∂ ln lt
∂φ

=
1

σ2
etwt

∂ ln lt
∂θ

=
1

σ2
etwtF (yt−z)

∂ ln lt
∂γ1

= −
1

σ2
wt(θ

′

xt)
(yt−z − c1)

σF
exp

(
−γ1 (yt−z − c1)

σF

)
[1− F (yt−z)]

2

∂ ln lt
∂c1

=
1

σ2
wt(θ

′

xt)
γ1
σF

exp

(
−γ1 (yt−z − c1)

σF

)
[1− F (yt−z)]

2

∂ ln lt
∂γ2

=
1

σ2
wt(θ

′

xt)
(yt−z − c2)

σF
exp

(
γ2 (yt−z − c2)

σF

)
[1− F (yt−z)]

2

∂ ln lt
∂c2

= −
1

σ2
wt(θ

′

xt)
γ2
σF

exp

(
γ2 (yt−z − c2)

σF

)
[1− F (yt−z)]

2

∂ ln lt
∂d

= −
1

σ2
wt

t−1∑

j=1

ε̂t−j
j

.

Appendix 2

The needed gradients for equation (1) and (2) with respect to Ψ vector parameters are:

∂H

∂φ
= wt

∂H

∂θ
= wtF (yt−z)

∂H

∂γ1
= −(θ

′

wt)
(yt−z − c1)

σF
exp

(
−γ1 (yt−z − c1)

σF

)
[1− F (yt−z)]

2

∂H

∂γ2
= (θ

′

wt)
(yt−z − c2)

σF
exp

(
γ2 (yt−z − c2)

σF

)
[1− F (yt−z)]

2

∂H

∂c1
= (θ

′

wt)
γ1
σF

exp

(
−γ1 (yt−z − c1)

σF

)
[1− F (yt−z)]

2

∂H

∂c2
= −(θ

′

wt)
γ2
σF

exp

(
γ2 (yt−z − c2)

σF

)
[1− F (yt−z)]

2

∂H

∂d
= −

t−1∑

j=1

ε̂t−j
j

.
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