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Abstract 
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(modeled after an AR(1)-GARCH(1,1)) using two dynamic factors as exogenous regressors that were extracted from a 
Factor Augmented VAR model (Bernanke et al. (2005)). The dataset includes 115 macroeconomic, financial and 
commodities indicators with daily frequency from April 4, 2008 through January 25, 2010 totalling 463 observations 
that capture the strong uncertainties emerging on the carbon market. The main result shows that the best forecasting 
performance for the volatility of carbon prices is achieved for the model including the dynamic factors as exogenous 
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1 Introduction

Since its creation in January 2005, the European Union Emissions Trad-
ing Scheme (EU ETS) has become an intellectual and operational center of
gravity around which to organize and deliver effective climate change policy.
Among its main features, the EU ETS has contributed to establish a carbon
price for CO2 allowances, which is being used for various purposes: hedging
for regulated energy companies, speculation for financial arbitragists, port-
folio diversification for investment banks, etc. According to Pointcarbon1,
the volume of transactions of allowances on the European carbon market has
grown rapidly from 262 million tons in 2005 to over 5,000 million tons in 2009
which, valued at =C20/ton on average, represents currently a market value of
=C100 billion.

Hence, a growing academic literature has been focusing on forecasting the
returns of carbon prices which can useful for brokers, energy companies and
risk managers. Benz and Trueck (2009) analyze the short-term spot price
behavior of CO2 allowances during 2005-2006. By conducting in-sample and
out-of-sample forecasting analysis of the returns of carbon prices, they find
that AR-GARCH models capture adequately the characteristics like skew-
ness, excess kurtosis and in particular different phases of volatility behavior
in the returns. Chevallier (2009) examines the empirical relationship between
the returns on carbon futures and changes in macroeconomic conditions. By
using variables which possess forecast power for equity and commodity re-
turns, the author documents that carbon futures returns may be weakly
forecast on the basis of two variables from the stock and bond markets, i.e.
equity dividend yields and the “junk bond” premium. Finally, Chevallier
(2010) analyzes the modeling of risk premia in CO2 allowances spot and fu-
tures prices. The author finds a better forecast performance of futures premia
of all maturities for models incorporating the variance of spot prices as an
exogenous variable.

Compared to previous literature, this article focuses on volatility forecast-
ing of carbon prices. As noted by Daskalakis et al. (2009), the high volatility
and the existence of extreme discontinuous variations in carbon prices mean
that much caution is needed when dealing with emission allowance deriva-
tives. Uncertainty linked to financial markets and economic growth, as well
as to new institutional design features by 2020 (with a linear reduction in
allocation from 20 to 30% and the introduction of auctioning), yields to high
volatility levels of carbon prices. To tackle this issue, this article extracts in-
formation from a large dataset of macroeconomic, financial and commodities

1Available at http://www.pointcarbon.com/
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markets based on Bernanke et al. (2005)’s Factor Augmented VAR (FAVAR)
approach. The central result shows that the best forecast performance of the
volatility of carbon prices (namely the conditional volatility extracted from
an AR(1)-GARCH(1,1) model as in Benz and Trueck (2009)) is achieved for
models including the dynamic factors as exogenous regressors.

The article is structured as follows. Section 2 presents the data. Section
3 details the FAVAR model. Section 4 contains the volatility forecasting
exercise. Section 5 concludes.

2 Data

The dataset covers the period going from April 4, 2008 to January 25, 2010,
totalling 463 daily observations for each series. We choose this study period
in order to provide a recent analysis of the effect of the financial crisis on
carbon markets2.

Three carbon price series are used: the European Union Allowance (EUA)
spot price exchanged on BlueNext (EUA BNX SPOT ), the EUA futures price
of maturity December 2010 exchanged on the European Climate Exchange
(EUA ECX FUT ), and the secondary Certified Emissions Reduction (CER)
futures price of maturity December 2010 also exchanged on ECX (CER ECX
FUT ). The former two variables represent the most liquid carbon prices
available in the EU ETS for spot and futures prices, respectively (Chevallier
(2009)). The latter variable may be seen as a proxy of ’world’ carbon prices,
as they represent carbon assets exchangeable at a global scale within the
Kyoto Protocol (World Bank (2009)). The conditional volatility of carbon
prices is modeled from an AR(1)-GARCH(1,1) (Benz and Truek (2009)).
Carbon price volatilities used in this article are shown in Figure 1.

Concerning macroeconomic, financial and commodities markets, the data
include a large number of time-series related to industrial production, mar-
ket indices and various monetary aggregates. The dataset also comprises
the prices of stocks of major US and European companies (for a broad in-
dustrial coverage as well as in the energy sector), and a number of bond
and stock indices. Finally, the dataset includes detailed information on the
use of all the available energy sources across sectors of the economy, includ-
ing energy products derived from petroleum and natural gas. The list of
the 115 variables, along with the required stationarity transformations and

2Note that, due to computational burden, we cannot extend easily the study period
from the implementation of the EU ETS in 2005. It is likely that by conducting such an
analysis on a longer time period, we can limit the obvious impact of the financial crisis on
the volatility of carbon prices. We thank a referee for highlighting this point.
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’slow’ vs. ’fast’ identification codes (as in Bernanke et al. (2005)), may be
found in Table 1. All time-series were downloaded from Thomson Financial
Datastream.

Next, we detail the procedure to extract factors from such a large dataset
in a FAVAR model.

3 Factor-Augmented VAR

In a seminal article, Bernanke et al. (2005) pointed out that macroeconomic
aggregates such as output and inflation might not be perfectly observable nei-
ther to the policy-maker nor to the econometrician. Instead, they argued that
the observed macroeconomic time series should be thought of as “noisy” mea-
sures of economic concepts. Accordingly, these concepts should be treated
as unobservable in empirical work, so as to avoid confounding measurement
error or idiosyncratic dynamics with fundamental economic shocks.

Therefore, they suggested to extract a few common factors from a large
number of macroeconomic time-series, and to study the mutual dynamics of
the key economic aggregates by estimating a joint VAR of the factors and
the policy instrument, an approach which they labelled “Factor-Augmented
VAR”. This approach can be summarized by the following equations:

Xt = ΛF Ft + Λrrt + et (1)
(

Ft

rt

)

= µ + Φ(L)

(

Ft−1

rt−1

)

+ ωt (2)

where Xt denotes a Mx1 vector of period-t observations of the observed
macroeconomic variables, ΛF and Λr are the Mxk and Mx1 matrices of
factor loadings, rt denotes the carbon prices, Ft is the kx1 vector of period-t
observations of the common factors, and et is an Mx1 vector of idiosyncratic
components, µ = (µ′

f , µr)
′ is a (k + 1)x1 vector of constants, Φ(L) denotes

the (k + 1)x(k + 1) matrix of order-p lag polynomials and ωt is a (k + 1)x1
vector of reduced form shocks with variance covariance matrix Ω. Standard
initial conditions in this context can be found in Koop (2003).

Consequently, our FAVAR is the tri-variate VAR of carbon prices aug-
mented with factors ft. Two factors were extracted using standard static
Principal Components methods (Stock and Watson (2002a,b)), with p = 2
the order of the FAVAR model based on standard lag length structure crite-
ria. Figure 2 pictures the dynamic factors extracted from the dataset. Factor
1 contains macroeconomic and financial time-series, while Factor 2 accounts
for commodities time-series (see Table 1 for the list of variables). Visually,
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we observe a high degree of variability in macroeconomic and financial vari-
ables. Commodities variables also exhibit a high degree of variability, but
with a more pronounced adjustment to the financial crisis towards the end
of the period. Descriptive statistics for the two factors, as well as for the
carbon prices, are given in Table 2. Next, we develop our volatility forecast-
ing exercise of carbon prices by using the factors obtained from the dynamic
FAVAR analysis.

4 Volatility Forecasting

Before proceeding with the formal volatility forecasting exercise, we compute
first the correlations between factors and carbon price volatilities. As shown
in Table 3, the correlations are comprised between -0.02 and -0.287, which
does not indicate potential multicolinearity problems between the endoge-
nous and exogenous variables in our model.

Second, we present in Table 4 the results of pairwise Granger causality
F -tests between factor and carbon price volatilities. We are able to de-
tect potential causality links (in the Granger sense) between factors and the
EUAECXFUTV OL variable: Factor 2 causes EUAECXFUTV OL at the
5.7% significance level, while Factor 1 is not significant at the 10% level but
very close (11.6%). This information appears useful to infer that statistical
relationships exist between variables in our model.

Table 5 presents regression results of carbon price volatilities on factors
estimated from the FAVAR(2) model. Here, the modeling differs from Benz
and Trueck (2009) on two points: (i) in the variance equation, we specify
an ARCH(1) model instead of a GARCH(1,1) since the GARCH coefficient
was not significant, and (ii) in the mean equation, we replace the endoge-
nous variable by carbon price volatilities (as explained in Section 2) and we
introduce the two dynamic factors as exogenous variables.

This specification yields to interesting results3. Indeed, we are able to
observe that dynamic factors impact significantly (at the 1% level) and nega-
tively carbon price volatilities across all regressions. The negative sign may be
explained by the fact that factors constitute a proxy for the depressive effect
of the financial crisis embedded within macroeconomic, financial and com-
modities markets indicators. The FAVAR(2) model therefore appears to cap-
ture adequately the “unobservable” information contained in large datasets,
as posited by Bernanke et al. (2005). Besides, these first results document

3Note the introduction of various level of lags for the exogenous and endogenous vari-
ables did not change qualitatively the results obtained. To conserve space, we present only
here results in contemporaneous form.
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the effect of the financial crisis on carbon price volatilities which - to our
best knowledge - is new. In the variance equation, we verify that all the
coefficients are positive and statistically significant in order to validate the
ARCH modeling. Diagnostic tests which are provided at the bottom of Table
5 confirm that the residuals are not autocorrelated (based on the Ljung-Box
test), and that the ARCH effects are correctly captured by the model (based
on the Engle ARCH test).

The next step consists in assessing the forecasting power of our model
compared to a model without factors. We first need to compute m-step-
ahead forecasts of carbon price volatilities based on the following expression
(Bollerslev et al. (1994)):

σ2
(t+m) = α0 +

q
∑

i=1

αiǫ
2
(t+m−i) (3)

This standard formulation is convenient to obtain the volatility estimate
over the m-day horizon. In our forecasting exercice, we typically compute
one-day forecasts. The forecast error is simply the difference between the
actual and forecasted values.

Thus, we take our analysis one step further by evaluating how the dy-
namic factors estimated from the FAVAR(2) model improve the forecast per-
formance of carbon price volatilities. To do so, we regress the carbon price
volatilities in Table 5 without/with incorporating the two dynamic factors
and compare in-sample forecasts based on the Root Mean Squared Error
(RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percent-
age Error (MAPE).

Suppose the forecast sample is j = T + 1, T + 2, . . . , T + h, and denote
the actual and forecasted value in period t as yt and ŷt, respectively. The
reported forecast error statistics are computed as follows:

RMSE =

√

√

√

√

T+h
∑

t=T+1

(ŷt − yt)
2

h
(4)

MAE =
T+h
∑

t=T+1

| ŷt − yt |

h
(5)

MAPE = 100
T+h
∑

t=T+1

| ŷt − yt |

yt

h
(6)
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In Table 6, all criteria are minimized in the models incorporating the
dynamic factors, which suggests that these variables are useful for forecasting
in this context. Let us examine visually their forecast performance.

Figure 3 plots the forecasted series together with the actual series in the
forecast sample with error bounds. The dashed red-line represents the mean
value of corresponding in-sample forecasts. The dashed green-lines represent
upper and lower forecast error bounds computed with, respectively, plus and
minus two standard error series. We observe that the mean of in-sample fore-
casts track reasonably well the mean of the dependent variable in the models
incorporating the dynamic factors. These comments apply more especially
for the variables EUAECXFUTV OL and CERECXFUTV OL. The accu-
racy of volatility forecasts appears higher than for the EUABNXSPOTV OL

variable (all volatility forecasts seem to underestimate the actual value but
the effects are less pronounced for the former two variables).

This graph confirms that the best insample forecasts are obtained with the
dynamic factors estimated from the FAVAR(2) model, as the red dashed-lines
provide satisfactory goodness-of-fit to the dependent variable. Also, forecast
error bounds fall generally within the actual dependent variable for the model
with dynamic factors included as exogenous regressors. These results hold
for all carbon price volatilities.

5 Conclusion

The EU ETS was created in 2005 with a “light touch” of regulation in or-
der to allow a liquid allowances market to establish itself. The pilot Phase
(2005-2007) showed that the market is subject to strong uncertainties, due
to physical, institutional and financial determinants, and that information
release has to be done in a particular way (Alberola et al. (2008)).

In contrast with previous literature, we develop in this article a forecast-
ing exercise of the volatility of carbon prices which can be useful for brokers,
energy regulated companies and financial market players. Against this back-
ground of strong uncertainties, we extract “latent” unobservable information
from 115 macroeconomic, financial and global commodities time-series into
two dynamic factors based on Bernanke et al. (2005)’s Factor Augmented
VAR model with daily frequency from April 4, 2008 through January 25,
2010 totalling 463 observations.

Then, we use the dynamic factors in order to forecast the volatility of
carbon prices modeled after an AR(1)-GARCH(1,1) model (Benz and Truek
(2009)). The highest forecasting accuracy is obtained for the model with the
dynamic factors included as exogenous regressors for the volatility of carbon
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prices, as indicated by standard in-sample forecasts statistics. This result
is robust across various categories of carbon prices: EUA spot and futures
prices, as well as CER prices.
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Figure 1: Conditional standard deviation extracted from AR(1)-GARCH(1,1)
model for EUA BNX spot allowances, EUA ECX and CER ECX futures con-
tracts of maturity December 2010 from April 4, 2008 to January 25, 2010
Source: BlueNext (BNX) and the European Climate Exchange (ECX)

Note: EUA stands for European Union Allownance, and CER for (secondary)

Certified Emissions Reduction. 9
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Table 1: Macroeconomic, financial and commodities series used in the FAVAR(2) model

No. Series ID Title Tcode SlowCode
1 CGSYSPT S&P GSCI Commodity Spot - PRICE INDEX 4 1
2 GSCIEXR S&P GSCI Commodity Excess Return 4 1
3 GSCITOT S&P GSCI Commodity Total Return 4 1
4 GSENSPT S&P GSCI Energy Spot- PRICE INDEX 4 1
5 GSREEXR S&P GSCI Red. EnergyExcess Return 4 1
6 GSENTOT S&P GSCI Energy Total Return 4 1
7 RECMDTY Reuters Commodities Index - PRICE INDEX 4 1
8 MOCMDTY Moody’s Commodities Index - PRICE INDEX 4 1
9 MLCXSPT MLCX Spot Index - PRICE INDEX 4 1
10 MLCXTOT MLCX Total Return 4 1
11 MLCXCLE MLCX Crude Oil (WTI)Excess Return - EXCESS RETURN 4 1
12 MLCXCLS MLCX Crude Oil (WTI)Spot Index - PRICE INDEX 4 1
13 MLCXCLT MLCX Crude Oil (WTI)Total Return 4 1
14 MLCXNGE MLCX Natural Gas Excess Return 4 1
15 MLCXNGS MLCX Natural Gas Spot Index 4 1
16 MLCXNGT MLCX Natural Gas Total Return 4 1
17 LCRINDX London Brent Crude Oil Index U$/BBL - PRICE INDEX 4 1
18 LNGINDX London Natural Gas Index P/Therm - PRICE INDEX 4 1
19 COALARA Global Insight Coal Index Basis 6000 - PRICE INDEX 4 1
20 DJUBSSP DJ UBS-Spot Commodity Index - PRICE INDEX 4 1
21 DJUBEAT DJ UBS 50/50 Energy&Agri Comdty TR - TOTAL RETURN 4 1
22 DJUBENE DJ UBS-Energy Index ER - EXCESS RETURN 4 1
23 DJUBEUT DJ UBS-Commodity Index (Euro) TR - TOTAL RETURN 4 1
24 DJUBHOT DJ UBS-Heating Oil Sub Index TR - TOTAL RETURN 4 1
25 DJUBNGT DJ UBS-Natural Gas Sub Index TR - TOTAL RETURN 4 1
26 DJUBPRT DJ UBS-Petroleum Index TR - TOTAL RETURN 4 1
27 DJUBRBT DJ UBS-Unleaded Gas Sub Index TR - TOTAL RETURN 4 1
28 DJUBSER DJ UBS-Future Commodity Ind ER - EXCESS RETURN 4 1
29 CXAGERU CX Agriculturals Index ER - EXCESS RETURN 4 1
30 CXENERU CX Energy Index ER -EXCESS RETURN 4 1
31 CYDLOER CYD Long Only ExcessReturn - EXCESS RETURN 4 1
32 CYDLOTR CYD Long Only Total Return - TOTAL RETURN 4 1
33 CYDLSER CYD Long Short Excess Return - EXCESS RETURN 4 1
34 CYDLSTR CYD Long Short TotalReturn 4 1
35 CRBSPOT CRB Spot Index (1967=100) - PRICE INDEX 4 1
36 NYFECRB TR Equal Weight CCI - PRICE INDEX 4 1
37 CRBENGY TR Equal Weight CCI Energy 1977=100 - PRICE INDEX 4 1
38 WCFINDX Westpac Commodity Futures Ind - PRICE INDEX 4 1
39 SCINTRE Seasonal Comm. Index Total EUR - TOTAL RETURN 4 1
40 SCINERE Seasonal Comm. Index Excess EUR - EXCESS RETURN 4 1
41 CICIERE China & India Comm. Index Excess EUR - EXCESS RETURN 4 1
42 CICITRE China & India Comm. Index Total EUR - TOTAL RETURN 4 1
43 FUELOIL Fuel Oil, No.2 (New York), C/Gallon 4 1
44 OILBREN Crude Oil-Brent Cur.Month FOB U$/BBL 4 1
45 GASUREG Gasoline,Unld. Reg. Oxy. NY Cts/Gal 4 1
46 NATLGAS Natural Gas-Henry Hub $/MMBTU 4 1
47 JETCIFC Jet Kerosene-Cargos CIF NWE U$/MT 4 1
48 OILGASO Gas Oil-EEC CIF Cargos NWE U$/MT 4 1
49 LNGINDX London Natural Gas Index P/Therm - PRICE INDEX 4 1
50 OILBRNP Crude Oil-Brent Dated FOB U$/BBL 4 1
51 OSCBM1L Crude Spread Brent M-M+1 UK Close 1 1
52 OSCBM1N Crude Spread Brent M-M+1 NY Close 1 1
53 LCOEM01 Brent Fut Swap M1 S.Voe U$/BBL 4 1
54 LCOEM06 Brent Fut Swap M6 S.Voe U$/BBL 4 1
55 LCOEQ01 Brent Fut Swap Q1 S.Voe U$/BBL 4 1
56 LCOEQ04 Brent Fut Swap Q4 S.Voe U$/BBL 4 1
57 LCOEY01 Brent Fut Swap Y1 S.Voe U$/BBL 4 1
58 LCOEY02 Brent Fut Swap Y2 S.Voe U$/BBL 4 1
59 LCOEY03 Brent Fut Swap Y3 S.Voe U$/BBL 4 1
60 LCOEY04 Brent Fut Swap Y4 S.Voe U$/BBL 4 1
61 LCOEY05 Brent Fut Swap Y5 S.Voe U$/BBL 4 1
62 POWBASE Powernext Elec. Baseload E/Mwh 4 1
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63 POWPEAK Powernext Elec. Peakload E/Mwh 4 1
64 APXAVBA APX-Electricity Avg Price Base Load 4 1
65 APXSUPK APX-Electricity Avg Super Peak Hours 4 1
66 APXOFPK APX-Electricity Avg Off Peak Hours 4 1
67 DJCINFP DJ Cinergy Elec. Firm On Peak - PRICE INDEX 4 1
68 EEXBASE EEX - Phelix Base Hr.01-24 E/Mwh 4 1
69 NPXAVRF Nordpool-ElectricityAvg Reference 4 1
70 UKPXSPT APX Power UK Spot Base Load Index 4 1
71 EIACGPR Gasoline Conv. US Prod. MBBL/Day - TURNOVER 4 1
72 EIACGST Gasoline Conv. US Stocks MBBL - INVENTORY VOLUME 4 1
73 EIACODS Crude Oil US Days of Supply - VALUE 4 1
74 EIACOEX Crude Oil US Exports MBBL/Day - TURNOVER 4 1
75 EIACOIM Crude Oil US Imports MBBL/Day - TURNOVER 4 1
76 EIACORI Crude Oil Refinery Inputs MBBL/Day - TURNOVER 4 1
77 EIACRWT Crude Oil-WTI FOB Cushing $/BBL 4 1
78 EIADIPR Distillate Refinery Prod. MBBL/Day - TURNOVER 4 1
79 EIADIST Distillate US Stocks MBBL - INVENTORY VOLUME 4 1
80 EIADSDS Distillate US Days ofSupply - VALUE 4 1
81 EIADSIM Distillate US ImportsMBBL/Day - TURNOVER 4 1
82 EIADSLA Diesel No.2 LA Low Sulfur FOB C/GAL 4 1
83 EIADSNY Diesel No.2 NYH Low Sulfur FOB C/GAL 4 1
84 EIAFGPR Gasoline Finished US Prod. MBBL/Day - TURNOVER 4 1
85 EIAFGST Gasoline Finished US Stocks MBBL - INVENTORY VOLUME 4 1
86 EIAFOIM Fuel Oil US Imports MBBL/Day - TURNOVER 4 1
87 EIAFOPR Fuel Oil Refinery Prod. MBBL/Day - TURNOVER 4 1
88 EIAFOST Fuel Oil US Stocks MBBL - INVENTORY VOLUME 4 1
89 UKTBT1M UK TREASURY BILL TENDER 1M - MIDDLE RATE 1 0
90 UKTBTND UK TREASURY BILL TENDER 3M - MIDDLE RATE 1 0
91 USFDTRG US FEDERAL FUNDS TARGET RATE - MIDDLE RATE 1 0
92 FRTBS3M US TREASURY BILL 2NDMARKET 3 MONTH - MIDDLE RATE 1 0
93 EUEONIA EURO OVERNIGHT INDEX AVERAGE(EONIA) - OFFERED RATE 1 0
94 EURONIA EURONIA OVERNIGHT AVG. (LDN:WMBA) - MIDDLE RATE 1 0
95 LDNIBON UK INTERBANK OVERNIGHT - MIDDLE RATE 1 0
96 ECEUR1M EURO EURO-CURR 1 M (FT/ICAP/TR) - MIDDLE RATE 1 0
97 ECEUR1W EURO EURO-CURR 1 WK (FT/ICAP/TR) - MIDDLE RATE 1 0
98 ECEUR1Y EURO EURO-CURR 1 YR (FT/ICAP/TR) - MIDDLE RATE 1 0
99 ECEUR3M EURO EURO-CURR 3 M (FT/ICAP/TR) - MIDDLE RATE 1 0
100 ECEUR6M EURO EURO-CURR 6 M (FT/ICAP/TR) - MIDDLE RATE 1 0
101 LCBBASE UK CLEARING BANKS BASE RATE - MIDDLE RATE 1 0
102 LDNIB7D UK INTERBANK 7 DAY - MIDDLE RATE 1 0
103 LDNIB1M UK INTERBANK 1 MONTH - MIDDLE RATE 1 0
104 LDNIB6M UK INTERBANK 6 MONTH - MIDDLE RATE 1 0
105 LDNIB1Y UK INTERBANK 1 YEAR -MIDDLE RATE 1 0
106 BBSRB1W UK REPO BENCHMARK 1 WEEK (LDN:BBA) - MIDDLE RATE 1 0
107 BBSRB2W UK REPO BENCHMARK 2 WEEK (LDN:BBA) - MIDDLE RATE 1 0
108 BBSRB3W UK REPO BENCHMARK 3 WEEK (LDN:BBA) - MIDDLE RATE 1 0
109 BBSRB1M UK REPO BENCHMARK 1 MTH (LDN:BBA) - MIDDLE RATE 1 0
110 BBSRB2M UK REPO BENCHMARK 2 MTH (LDN:BBA) - MIDDLE RATE 1 0
111 BBSRB3M UK REPO BENCHMARK 3 MTH (LDN:BBA) - MIDDLE RATE 1 0
112 BBSRBON UK REPO BENCHMARK O/N(LDN:BBA) - MIDDLE RATE 1 0
113 BBSRB6M UK REPO BENCHMARK 6 MTH (LDN:BBA) - MIDDLE RATE 1 0
114 BBSRB9M UK REPO BENCHMARK 9 MTH (LDN:BBA) - MIDDLE RATE 1 0
115 BBSRB1Y UK REPO BENCHMARK 1 YEAR (LDN:BBA) - MIDDLE RATE 1 0

Source: Thomson Financial Datastream

Note: Tcode stands for Transformation code. If zit is the original untransformed series, the
transformation codes are: 1. no transformation (levels), xit = zit; 2. first difference, xit = zit − zit

−1
; 3.

logarithm, xit = log zit; 4. first difference of logarithm, xit = log zit − log zit
−1

. SlowCode is a dummy
variable equal to 1 if the variable is characterized as ’slow’, or zero if it characterized as ’fast’. According
to Bernanke et al. (2005), the ’fast’ moving variables are interest rates, stock returns, exchange rates
and commodity prices. The rest of the variables in the dataset are ’slow’ moving variables.
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Table 2: Descriptive Statistics
EUABNXSPOTVOL EUAECXFUTVOL CERECXFUTVOL FACTOR1 FACTOR2

Mean 0.963 0.992 1.051 -9.25E-17 1.04E-16
Median 0.972 0.908 0.850 0.013 0.134

Maximum 1.326 2.113 4.232 1.697 0.520
Minimum 0.647 0.693 0.391 -1.720 -1.606
Std. Dev. 0.190 0.271 0.684 0.583 0.445
Skewness -0.080 1.710 1.677 -0.095 -2.073
Kurtosis 1.687 6.161 6.223 3.097 6.330

Jarque-Bera 13.834 172.708 172.270 0.365 226.323
Observations 462 462 462 462 462

Source: BlueNext, European Climate Exchange, Thomson Financial Datastream

Note: The first three columns are the conditional standard deviations extracted from
AR(1)-GARCH(1,1) models with EUABNXSPOTV OL the European Union Allowance spot price from
BlueNext, EUAECXFUTV OL the EUA futures price of maturity December 2010 from European
Climate Exchange, CERECXFUTV OL the (secondary) Certified Emissions Reduction futures price of
maturity December 2010 from ECX. FACTOR1 is the first factor extracted from the tri-variate
FAVAR(2) model of carbon prices with 115 macroeconomic, financial and commodities variables, and
FACTOR2 the second factor extracted with the same methodology.
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Table 3: Correlations between factors and carbon price volatilities
EUABNXSPOTVOL EUAECXFUTVOL CERECXFUTVOL FACTOR1 FACTOR2

EUABNXSPOTVOL 1
EUAECXFUTVOL 0.173 1
CERECXFUTVOL 0.315 0.806 1

FACTOR1 -0.219 -0.182 -0.199 1
FACTOR2 -0.287 -0.023 -0.081 -0.063 1

Note: The first three columns are the conditional standard deviations extracted from AR(1)-GARCH(1,1) models with EUABNXSPOTV OL the European
Union Allowance spot price from BlueNext, EUAECXFUTV OL the EUA futures price of maturity December 2010 from European Climate Exchange,
CERECXFUTV OL the (secondary) Certified Emissions Reduction futures price of maturity December 2010 from ECX. FACTOR1 is the first factor
extracted from the tri-variate FAVAR(2) model of carbon prices with 115 macroeconomic, financial and commodities variables, and FACTOR2 the second
factor extracted with the same methodology.
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Table 4: Pairwise Granger causality F tests
Null Hypothesis F-Statistic Probability

FACTOR1 does not Granger Cause EUABNXSPOTVOL 0.561 0.571
EUABNXSPOTVOL does not Granger Cause FACTOR1 4.075 0.018

FACTOR2 does not Granger Cause EUABNXSPOTVOL 0.534 0.586
EUABNXSPOTVOL does not Granger Cause FACTOR2 1.619 0.200

FACTOR1 does not Granger Cause EUAECXFUTVOL 2.174 0.116
EUAECXFUTVOL does not Granger Cause FACTOR1 3.299 0.039

FACTOR2 does not Granger Cause EUAECXFUTVOL 2.906 0.057
EUAECXFUTVOL does not Granger Cause FACTOR2 1.279 0.280

FACTOR1 does not Granger Cause CERECXFUTVOL 0.710 0.492
CERECXFUTVOL does not Granger Cause FACTOR1 4.675 0.010

FACTOR2 does not Granger Cause CERECXFUTVOL 0.308 0.734
CERECXFUTVOL does not Granger Cause FACTOR2 1.205 0.301

Note: Carbon price variables are the conditional standard deviations extracted from AR(1)-GARCH(1,1)
models with EUABNXSPOTV OL the European Union Allowance spot price from BlueNext,
EUAECXFUTV OL the EUA futures price of maturity December 2010 from European Climate
Exchange, CERECXFUTV OL the (secondary) Certified Emissions Reduction futures price of maturity
December 2010 from ECX. FACTOR1 is the first factor extracted from the tri-variate FAVAR(2) model
of carbon prices with 115 macroeconomic, financial and commodities variables, and FACTOR2 the
second factor extracted with the same methodology. This table reports pairwise F statistics and their
p-values.
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Table 5: Regressions of carbon price volatilities on factors estimated from
the FAVAR(2) model

EUABNXSPOTVOL EUAECXFUTVOL CERECXFUTVOL
(1) (2) (3)

Mean Equation
Constant 0.922*** (0.004) 0.907*** (0.004) 0.773*** (0.026)
Factor 1 -0.029*** (0.007) -0.062*** (0.008) -0.104*** (0.037)
Factor 2 -0.151*** (0.007) -0.230*** (0.017) -0.208*** (0.032)

Variance Equation
Constant 0.001* (0.001) 0.005*** (0.001) 0.062*** (0.012)
ARCH(1) 0.937*** (0.381) 0.942*** (0.178) 0.987*** (0.172)

Diagnostic Tests
Adjusted R-squared 0.139 0.144 0.147

AIC -1.400 -0.526 -1.404
SC -1.314 -0.441 -1.489

Log likelihood 138.013 55.282 128.422
LB Test 0.186 0.200 0.172

ARCH Test 0.963 0.991 0.986
F-Stat. 0.000 0.000 0.000

Note: Carbon price variables are the conditional standard deviations extracted from
AR(1)-GARCH(1,1) models with EUABNXSPOTV OL the European Union Allowance
spot price from BlueNext, EUAECXFUTV OL the EUA futures price of maturity
December 2010 from European Climate Exchange, CERECXFUTV OL the (secondary)
Certified Emissions Reduction futures price of maturity December 2010 from ECX.
FACTOR1 is the first factor extracted from the tri-variate FAVAR(2) model of carbon
prices with 115 macroeconomic, financial and commodities variables, and FACTOR2
the second factor extracted with the same methodology. ARCH(1) is the ARCH(p)
coefficient of order 1. Standard error in parenthesis. *** denotes statistical significance
at the 1% level, ** at the 5% level, and * at the 10% level. AIC is the Akaike
Information, SC the Schwarz information criterion, LB Test is the Ljung-Box test,
ARCH test is the Engle ARCH test, and F − Stat. the p-value of the F -Statistic.
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Table 6: In-sample volatility forecasts of carbon prices with/without factors
estimated from the FAVAR(2) model

Variable RMSE MAE MAPE
EUABNXSPOTVOL without factors 0.200 0.177 19.836

EUABNXSPOTVOL with factors 0.183 0.152 16.173
EUACERFUTVOL without factors 0.311 0.203 18.375

EUACERFUTVOL with factors 0.293 0.187 16.479
CERECXFUTVOL without factors 0.788 0.494 47.003

CERECXFUTVOL with factors 0.733 0.455 43.122

Note: Carbon price variables are the conditional standard deviations extracted from
AR(1)-GARCH(1,1) models with EUABNXSPOTV OL the European Union Allowance
spot price from BlueNext, EUAECXFUTV OL the EUA futures price of maturity
December 2010 from European Climate Exchange, CERECXFUTV OL the (secondary)
Certified Emissions Reduction futures price of maturity December 2010 from ECX.
FACTOR1 is the first factor extracted from the tri-variate FAVAR(2) model of carbon
prices with 115 macroeconomic, financial and commodities variables, and FACTOR2
the second factor extracted with the same methodology. RMSE refers to the Root Mean
Squared Error, MAE to the Mean Absolute Error, and MAPE to the Mean Absolute
Percent Error.
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