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1 Introduction

The purpose of this paper is to study the dynamics of the price level using a model where
traders within the model choose the prices of their goods rather than relying on theWalrasian
auctioneer. To that end, this paper provides results that complement those reported in Coles
and Wright (1998). In particular, it introduces a random proper version of Rubinstein and
Wolinsky’s (1985) bargaining game into Coles and Wright’s (1998) monetary search model.
In Coles and Wright (1998), the price dynamics are derived using a random-proposer

version of Rubinstein’s (1982) bargaining game, in which there is no bargaining breakdown.
They also considered a bargaining process similar to Rubinstein and Wolinsky (1985). How-
ever, their choice of the probability of a bargaining breakdown was arbitrary. In addition,
they focused on the price dynamics with Rubinstein’s (1982) bargaining game.
In this paper, I modify the model of Coles and Wright (1998) so that the probability of a

bargaining breakdown is chosen to be consistent with market conditions (i.e., the numbers of
buyers and sellers in the market). In other words, the bargaining process reflects additional
information about the market.
The steady state bargaining outcome coincides with the one under asymmetric Nash

bargaining. There is a unique monetary steady state characterized as a “source” and a
hyperinflationary path leading to the non-monetary steady state, just as in the traditional
monetary models, in which money is valued because it is in the utility function (Obstfeld
and Rogoff, 1983).

2 The Model

The economy is populated by a continuum of infinitely lived agents whose measure is nor-
malized to unity. There are k > 2 types of goods and k types of agents. Type i agent is
defined as an agent whose consumption good is indexed by i and production good is i + 1
(modulo k). The instantaneous utility from consuming q units of the good is U(q), where
U(0) = 0, U 0 > 0, and U 00 ≤ 0. If agent i is to produce, then the utility cost of producing q
units of the good is ci(q) = c(q) for any i, with c(0) ≥ 0, c0 > 0, and c00 ≥ 0. A fractionM of
the total population has one unit of fiat money (i.e., buyers). The complementary fraction
1−M of the population is endowed with a production opportunity (i.e., sellers). No agent
is allowed to hold more than one unit of money. Since one unit of fiat money is exchanged
for q units of a certain commodity, 1/q ≡ p is the price level.
Time is continuous, but for convenience a sufficiently short length of time ∆ is considered

as a period. The Poisson arrival rate at which an agent meets another is α so that during
a small period of time ∆ the probability that a buyer meets a seller is α∆(1 −M). Upon
meeting, a match is formed if and only if the seller has a good that is acceptable to the
buyer. Similarly, the probability that a seller meets a buyer in a short period of length ∆ is
α∆M .
With probability α∆(1 −M)/k the buyer meets a seller who has his/her consumption

good. In this case, the buyer consumes the good and becomes a seller. With probability
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1 − α∆(1−M)/k the buyer finds no match and continues to search. Let Vb(t) denote the
value of search as a buyer and Vs(t) denote the value of search as a seller. The rate of time
preference is r > 0.
Throughout the paper, I impose α/k = 1 for brevity. Then, the buyer’s value of search

is given recursively as Vb(t) = (1+ r∆)−1{(1−M)∆[EU(q(t+∆))+Vs(t+∆)]+ (1−∆(1−
M))Vb(t +∆) + o(∆)}, where EU(q(t +∆)) is the expected utility from consumption and
o(∆)/∆ → 0 as ∆ → 0. For rationality, it is necessary that all trades are voluntary. This
requires that EU(q(t+∆)) +Vs(t+∆) ≥ Vb(t+∆). Similarly, the seller’s value of search is
given by: Vs(t) = (1+r∆)−1{∆M [−Ec(q(t+∆))+Vb(t+∆)]+(1−∆M)Vs(t+∆)+o(∆)},
where Ec(q(t+∆)) is the expected cost of production. Rationality requires −Ec(q(t+∆))+
Vb(t+∆) ≥ Vs(t+∆).
Let ∆→ 0 to obtain the following:

rVb = (1−M) (EU (q) + Vs − Vb) + V̇b, (1)

rVs = M (−Ec (q) + Vb − Vs) + V̇s, (2)

where V̇b ≡ ∂Vb/∂t and V̇s ≡ ∂Vs/∂t.
The bargaining game employed in this paper is a random proposer version of Rubinstein

and Wolinsky (1985). In any period in which a buyer and a seller are matched, one of them
is selected randomly to make an offer: the buyer makes an offer with probability πb, and the
seller makes an offer with probability πs = 1 − πb. After an offer is made, the respondent
may either accept it or search for a new bargaining partner. Following Rubinstein and
Wolinsky (1985), the present model adopts a bargaining game with breakdowns. Thus, if a
new bargaining partner arrives during the bargaining process, then the current bargaining
partner will be discarded in favor of the new one.
I seek a bargaining equilibrium similar to the immediate trade equilibrium (ITE) con-

sidered by Coles and Wright (1998) in which there exist reservation values qs(t) and qb(t)
such that all sellers accept any offer q ≤ qs(t) and all buyers accept any offer q ≥ qb(t).
In addition, I follow Rubinstein and Wolinsky (1985) to assume that the strategies of the
agents are semi-stationary, in which a trader submits the same offer or reply, irrespective of
who his/her partner will be. See also Osborne and Rubinstein (1990, p.141.).
If a seller is to make an offer, he/she chooses qb(t) such that a buyer is indifferent between

accepting and rejecting the offer, given the value functions Vb and Vs and the length of the
bargaining period ∆. The seller must take into account the following. The buyer meets a
new seller with probability α∆(1−M). Given that a match occurs, with probability 1/k this
new agent turns out to be a seller who has the buyer’s consumer good. In this case, the buyer
will discard his/her current bargaining partner in favor of his/her new partner and receive
the expected payoff EU(q(t+∆))+Vs(t+∆), where the expected utility from consumption
satisfies EU(q(t + ∆)) = πsU(qb(t + ∆)) + πbU(qs(t + ∆)) because in the next round the
seller will make an offer qb(t + ∆) with probability πb and the buyer will make an offer
qs(t+∆) with probability πs. With probability (1−α∆(1−M)/k)(1−α∆M/k) neither the
buyer nor the seller will find a new partner and they will continue to be matched in the next
bargaining stage. In the next stage, the buyer makes a new offer with probability πb, and the
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seller makes a new offer with probability πs. With probability (1− α∆(1−M)/k)α∆M/k
the buyer will not find a new bargaining partner and the seller will find one in the interval
(t, t+∆). In that case, the seller will walk away and the buyer will be left with the value of
being unattached, Vb(t+∆).
Thus, with α/k = 1, the seller’s offer {qb (t)}∞t=0 must satisfy:

U (qb (t)) + Vs (t) =
1

1 + r∆
{∆ (1−M) [EU (q (t+∆)) + Vs (t+∆)]

+ (1−∆ (1−M)) (1−∆M) [EU (q (t+∆)) + Vs (t+∆)]

+ (1−∆ (1−M))∆MVb (t+∆) + o (∆)}, (3)

where the right-hand side of (3) is the expected value of rejecting qb(t).
Similarly, when a buyer is to make an offer, he/she chooses his/her offer such that a seller

is indifferent between accepting qs(t) and rejecting it. Thus, the buyer’s offer {qs (t)}∞t=0 must
satisfy:

−c (qs (t)) + Vb (t) =
1

1 + r∆
{∆M [−Ec (q (t+∆)) + Vb (t+∆)]

+ (1−∆ (1−M)) (1−∆M) [−Ec (q (t+∆)) + Vb (t+∆)]

+∆ (1−M) (1−∆M)Vs (t+∆) + o (∆)}. (4)

Note that, as is clear from (3) and (4), qb(t) and qs(t) are not only functions of t, but also
functions of∆. In what follows, I focus on the limit as∆→ 0, and derive a single differential
equation that describes the price level.

Proposition 1 In the limit as ∆ → 0, lim∆→0 qb(t) = lim∆→0 qs(t) ≡ q(t) for any t, and
the bargaining outcome satisfies

πbU
0 (q)

πsc0 (q)
=

(M + r)U (q)−MVb + (M + r)Vs − U 0 (q) q̇ − V̇s
− (1−M + r) c (q)− (1−M)Vs + (1−M + r)Vb + c0 (q) q̇ − V̇b

. (5)

In steady state, it satisfies
U 0 (q)
c0 (q)

=
πs
πb

U (q) + Vs − Vb
−c (q) + Vb − Vs . (6)

Proof. See the Appendix.
Consider the following asymmetric Nash bargaining problem: maxq[−c(q)+Vb−Ts]θ[U(q)+

Vs − Tb]1−θ, from which the bargaining outcome satisfies

U 0 (q)
c0 (q)

=
θ

1− θ

U (q) + Vs − Tb
−c (q) + Vb − Ts , (7)

where Tb and Ts are the threats for the buyer and the seller, respectively, and θ represents
the exogenous bargaining power of the seller. The threat represents the payoff when the
negotiation fails. Coles and Wright (1998) assumed (Tb, Ts) = (0, 0), which corresponds to
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Rubinstein (1982). This implies that the bargaining parties negotiate over time as if there
was nobody else in the market, and this specification is somewhat ad hoc.
The bargaining outcome (6) corresponds to the Nash solution with (Tb, Ts) = (Vb, Vs)

and θ = πs. In other words, in the steady state, the economy corresponds to the one
under asymmetric Nash bargaining where the exogenous bargaining power is given by the
probability of making an offer, and the threat equals the value of search.

3 Unique Monetary Equilibrium

From (1) and (2), we have:

V̇ = (1 + r)V − (1−M)U (q)−Mc (q) , (8)

where V ≡ Vb − Vs. Use (1) and (2) to eliminate V̇b and V̇s from (5) to obtain:

q̇ = πs
(M + r)U (q)−Mc (q)

U 0 (q)
− πb

(1−M)U (q)− (1−M + r) c (q)

c0 (q)
≡ G (q) . (9)

A monetary equilibrium is given by the sequence of V and q that satisfy (8), (9), and the
rationality condition, c(q) ≤ V ≤ U(q) or (1+r)c(q) ≤ (1−M)U(q)+Mc(q) ≤ (1+r)U(q).
The key difference from Coles and Wright (1998) is that (9) is independent of V . In other
words, when the probability of a bargaining breakdown is chosen to be consistent with the
market condition, the path of the price level is determined without any reference to the value
of search. This result has an important implication. Consider Figure 1, in which the steady
state monetary equilibrium is given by the intersection between the q̇ = 0 locus and the
V̇ = 0 locus. As shown in the figure, the monetary steady state is unique.

V

q

0=q&
0=V&

)(qUV ≥

)(qcV ≤

Figure 1

Having established uniqueness, I turn to the issue of stability.

Proposition 2 The monetary steady state is a source.

4



Proof. In the Appendix.
Interestingly, the unique monetary steady state is characterized by a “source” (see, for

example, Azariadis, 1993). This implies that, as in the traditional models of money (Brock,
1975; Obstfeld and Rogoff, 1983) there is a path leading to the non-monetary equilibrium
(0, 0). Absence of a state variable suggests that there is a continuum of self-fulfilling “hyper-
inflationary” non-stationary equilibria, just as in the traditional models. In addition, since
all other divergent paths will eventually violate one of the rationality conditions, there is a
unique monetary equilibrium, in which the economy stays in the monetary steady state at
any moment in time.
To highlight the (rather stark) difference between this economy and the one presented

in Coles and Wright (1998), let us introduce a fixed cost of production, c(0) = c̄ > 0, just as
in Coles and Wright (1998), who showed that with this fixed cost there are two monetary
steady states, and studied nonlinear dynamics around the steady states. Multiple equilibria
are possible in their model because their q̇ = 0 locus is an upward-sloping curve. As shown
in Figure 1, the q̇ = 0 locus is a vertical line in this model. This implies that the number of
monetary equilibria is invariant to the introduction of a fixed cost.
What does a fixed cost do in this economy? Since any steady state must satisfy (1+r)V =

(1−M)U(q)+Mc(q), it is easy to verify that as q → 0, V → (1+r)−1[(1−M)U(0)+Mc(0)] =
(1 + r)−1Mc̄ < c̄ = c(0), which violates the seller’s rationality V ≥ c(q). Thus, the non-
monetary steady state (q = 0) cannot be an equilibrium. In other words, with a fixed cost,
the monetary steady state is the only equilibrium. Interestingly, in this economy, a fixed
cost simply rules out the non-monetary equilibrium without introducing multiple monetary
equilibria. To be more specific, the hyperinflationary paths are ruled out by a fixed cost.
This resembles the way in which hyperinflationary paths are ruled out in the traditional
monetary models (Brock, 1975; Obstfeld and Rogoff, 1983).

4 Conclusion

An interesting implication of the model in this paper is that even in a model where money is
valued because of search frictions, the path of the price level is fully determined without any
reference to the value of search. This suggests an interesting dichotomy between the unit-of-
account role of money and the medium-of-exchange role of money. This property is new in
the literature. Important future research is to explore the degree to which this dichotomy is
true. This line of inquiry will contribute to the recent debate on whether the price dynamics
can be understood without explicitly modeling monetary frictions (Woodford, 2003).
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Appendix

A Proof of Proposition 1

The proof requires several steps.

Lemma 3 Vb and Vs are uniformly bounded.

Proof. Let bq be the solution to U(bq) = c(bq). From rationality c(q) ≤ V ≤ U(q) it is
evident that q(t+∆) ≤ bq holds for all t and ∆. In other words, q is bounded by bq. Thus, the
maximum possible lifetime utility an agent can get is U(bq)/r. Thus, Vb and Vs are bounded
from above. Furthermore, the value functions are bounded below by 0. Therefore, Vb and
Vs are uniformly bounded.

Lemma 4 ε(t) ≡ qs(t)− qb(t) converges to zero at rate ∆ as ∆→ 0.

Proof. Multiply (3) by (1+ r∆), rearrange terms, divide both sides by ∆, and take the
limit as ∆→ 0 to obtain

lim
∆→0

U (qb (t))− [πsU (qb (t+∆)) + πbU (qs (t+∆))]

∆

= −M [EU (q (t)) + Vs (t)]− r [U (qb (t)) + Vs (t)] +MVb (t) + V̇s. (10)

Similarly, multiply (4) by (1 + r∆), rearrange terms, divide both sides by ∆, and take the
limit as ∆→ 0 to obtain

lim
∆→0
−c (qs (t)) + πsc (qb (t+∆)) + πbc (qs (t+∆))

∆

= − (1−M) [−Ec (q (t)) + Vb (t)]− r [−c (qs (t)) + Vb (t)] + (1−M)Vs (t) + V̇b. (11)

Lemma 3 implies that (3) and (4) are finite for any ∆. Thus, the left-hand sides of (10) and
(11) are bounded. Consider the left-hand side of (10). Since U(qb(t)) − πsU(qb(t + ∆)) −
πbU(qs(t+∆)) = πb[U(qb(t))− U(qs(t))]− πs[U(qb(t+∆))− U(qb(t))]− πb[U(qs(t+∆))−
U(qs(t))], it is easy to show that

lim
∆→0

U (qb (t))− [πsU (qb (t+∆)) + πbU (qs (t+∆))]

∆

= lim
∆→0

"
πb

U(qb(t))−U(qs(t))
∆

− πs
U(qb(t+∆))−U(qb(t))

qb(t+∆)−qb(t)
qb(t+∆)−qb(t)

∆

−πb U(qs(t+∆))−U(qs(t))qs(t+∆)−qs(t)
qs(t+∆)−qs(t)

∆

#

= πb lim
∆→0

U (qb)− U (qs)
∆

− πsU
0 (qb) q̇b − πbU

0 (qs) q̇s. (12)
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Similarly, the left-hand side of (11) can be rewritten as

lim
∆→0
−c (qs (t)) + [πsc (qb (t+∆)) + πbc (qs (t+∆))]

∆

= lim
∆→0

"
−πs c(qs(t))−c(qb(t))∆

+ πs
c(qb(t+∆))−c(qb(t))
qb(t+∆)−qb(t)

qb(t+∆)−qb(t)
∆

+πb
c(qs(t+∆))−c(qs(t))
qs(t+∆)−qs(t)

qs(t+∆)−qs(t)
∆

#

= −πs lim
∆→0

c (qs)− c (qb)
∆

+ πsc
0 (qb) q̇b + πbc

0 (qs) q̇s. (13)

Use (12) and (13) to rewrite (10) and (11) as

πb lim
∆→0

U (qb)− U (qs)
∆

= −M [EU (q) + Vs]− r [U (qb) + Vs] +MVb
+πsU

0 (qb) q̇b + πbU
0 (qs) q̇s + V̇s ,

πs lim
∆→0

c (qb)− c (qs)
∆

= − (1−M) [−Ec (q) + Vb]− r [−c (qs) + Vb]
+ (1−M)Vs − πsc

0 (qb) q̇b − πbc
0 (qs) q̇s + V̇b,

Lemma 3 implies that the right-hand sides above are bounded. In other words, lim∆→0[U(qb)−
U(qs)]/∆ and lim∆→0[c(qb) − c(qs)]/∆ have limits, and denote them as Λb and Λs, respec-
tively. This also implies that ε(∆) → 0 as ∆ → 0. Furthermore, since U(·) and c(·) are
differentiable,

lim
ε(∆)→0

U (qs (t) + ε (∆))− U (qs (t))
ε (∆)

and lim
ε(∆)→0

c (qs (t) + ε (∆))− c (qs (t))
ε (∆)

have limits, and denote them by U 0(qs) and c0(qs), respectively. Thus,

Λb = πb lim
∆→0

U (qs (t) + ε (∆))− U (qs (t))
ε (∆)

ε (∆)

∆
= πbU

0 (qs) lim
∆→0

ε (∆)

∆
,

Λs = πs lim
∆→0

c (qs (t) + ε (∆))− c (qs (t))
ε (∆)

ε (∆)

∆
= πsc

0 (qs) lim
∆→0

ε (∆)

∆
.

Since Λb and Λs are bounded, lim∆→0 ε(∆)/∆ must have a limit. Thus, ε(∆) converges to
zero at rate ∆ as ∆→ 0.
Lemma 4 states that in the limit as ∆ → 0, it does not matter who makes an offer.

This is because the first-mover advantage disappears as the interval between offers becomes
negligible. In what follows, I denote q ≡ qb = qs.
With this result, let us complete a proof of Proposition 1. In the limit as ∆ → 0, (3)

and (4) are:

−πbU 0 (q) lim
∆→0

ε (∆)

∆
= − (M + r)U (q) +MVb − (M + r)Vs + U

0 (q) q̇ + V̇s,

−πsc0 (q) lim
∆→0

ε (∆)

∆
= (1−M + r) c (q) + (1−M)Vs − (1−M + r)Vb − c0 (q) q̇ + V̇b.
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An important implication of Lemma 4 is that lim∆→0 ε(∆)/∆ is well defined. Thus, one can
eliminate lim∆→0 ε(∆)/∆ from these expressions to obtain

πbU
0 (q)

πsc0 (q)
=

(M + r)U (q)−MVb + (M + r)Vs − U 0 (q) q̇ − V̇s
− (1−M + r) c (q)− (1−M)Vs + (1−M + r)Vb + c0 (q) q̇ − V̇b

.

Use (1) and (2) to rewrite it as

πbU
0 (q)

πsc0 (q)
=
(1 + r) [U (q) + Vs − Vb]− U 0 (q (t)) q̇ + V̇b − V̇s
(1 + r) [−c (q) + Vb − Vs] + c0 (q) q̇ + V̇s − V̇b

.

B Proof of Proposition 2

In matrix form, the system of differential equations (8)—(9) is given by·
q̇

V̇

¸
=

·
G (q)

− (1−M)U (q)−Mc (q) + (1 + r)V
¸
. (14)

The Jacobian of the system is

J =

·
G0 (q) 0

− (1−M)U 0 (q)−Mc0 (q) 1 + r

¸
.

The determinant of the Jacobian matrix is detJ = (1 + r)G0 (q), and the trace is trJ =
G0 (q) + 1 + r. Furthermore, (trJ)2 − 4 detJ = [G0(q) − 1 − r]2 > 0. Therefore, a steady
state is a saddle if G0 (q) < 0 and is a source if G0 (q) > 0. See, for example, Azariadis (1993,
p.135).
From (9), it is easy to obtain

G0(q) = πs
(M + r)U 0 (q)−Mc0 (q)

U 0 (q)
− πb

(1−M)U 0 (q)− (1−M + r) c0 (q)
c0 (q)

− πs
[(M + r)U (q)−Mc (q)]U 00 (q)

U 0 (q)2
+ πb

[(1−M)U (q)− (1−M + r) c (q)] c00 (q)

c0 (q)2
.

The last two terms are positive because (1 − M + r)c(q) ≤ (1 − M)U(q) and Mc(q) ≤
(r +M)U(q) are satisfied in any monetary equilibrium. Consider the sum of the first two
terms, which is positive if and only if

πs (M + r)−Mπb
(1−M)U (q)− (1−M + r) c (q)

(M + r)U (q)−Mc (q)
> (1−M)πs (M + r)U (q)−Mc (q)

(1−M)U (q)− (1−M + r) c (q)
− πb (1−M + r) ,

which follows from the fact that the steady state q solves G(q) = 0, or equivalently:

U 0 (q)
c0 (q)

=
πs
πb

(M + r)U (q)−Mc (q)
(1−M)U (q)− (1−M + r) c (q)

.
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Rewrite the condition further to obtain

[(1−M + r) (M + r)−M (1−M)]πbU (q)
(M + r)U (q)−Mc (q) >

[(M + r) (1−M + r)− (1−M)M ]πsc (q)
(1−M)U (q)− (1−M + r) c (q)

,

where the denominators of both sides are positive. Notice that (1−M + r)(M + r)−M(1−
M) = (1 + r)r > 0. Thus,

πbU (q)

(M + r)U (q)−Mc (q) >
πsc (q)

(1−M)U (q)− (1−M + r) c (q)
,

or
U (q)

c (q)
>

πs
πb

(M + r)U (q)−Mc (q)
(1−M)U (q)− (1−M + r) c (q)

=
U 0 (q)
c0 (q)

.

Thus, if Uc0 > U 0c, then G0(q) > 0. Notice that Uc0 > U 0c ⇔ c0
c
q > U 0

U
q. Since the utility

function is assumed to be more concave than the cost function, this condition is satisfied.
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