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Abstract 

We study the impact of alternative detrending techniques on the distributional properties of U.S. output time series. 
We detrend GDP and industrial production time series employing first-differencing, Hodrick-Prescott and bandpass 
filters. We show that the resulting distributions can be approximated by symmetric Exponential-Power densities, with 
tails fatter than those of a Gaussian. We also employ frequency-band decomposition procedures finding that fat tails 
occur more likely at high and medium business-cycle frequencies. These results confirm the robustness of the fat-tail 
property of detrended output time-series distributions and suggest that business-cycle models should take into account 
this empirical regularity.
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1. Introduction

In the recent years, different detrending techniques (e.g. linear trend, first-differencing,
Hodrick-Prescott and bandpass filters) have been proposed in macroeconomics to study the
business-cycle properties of aggregate time series (see e.g. Stock and Watson, 1999; Christiano
and Fitzgerald, 2003). However, the choice of the detrending procedure is anything but
neutral: different filtering methods can affect both the qualitative and the quantitative
stylized facts of the business cycle (Canova, 1998) and can bias the determination of business-
cycle turning points (Canova, 1999). Furthermore, the choice of the filter has also significant
implications for macroeconomic theory: Delle Chiaie (2009) shows that different detrending
techniques affect the estimation of structural parameters in Dynamic Stochastic General
Equilibrium (DSGE) models (e.g., Woodford, 2003; Gaĺı and Gertler, 2007), altering in turn
the magnitude and persistence of model responses to shocks.

Following this line of research, this work explores whether detrending has any relevant
impact on the distributional properties of filtered output time series. More specifically, we
filter U.S. GDP and industrial production (IP) time series employing a number of different
detrending techniques and we study the shape of the resulting time-series distributions using
a parametric approach.

Our results show that: (i) detrended U.S. output time-series distributions can be well
proxied by Expontial-Power densities with tails much fatter than those of a Normal distri-
bution; (ii) fat-tailed distributions emerge irrespectively of the particular filtering technique
employed to detrend the series (e.g. first-differencing, Hodrick-Prescott, bandpass filters).

Furthermore, we investigate whether there exist frequencies that are more conducive to
fat-tail behaviors. Our exercises suggest that fat tails do not seem to be a distinctive feature
of all classes of output fluctuations, as they can be more likely associated with high and
medium business-cycle frequencies.

The foregoing results have implications for both theoretical and empirical research. First,
they add further support to the widespread emergence of fat tails in the distributions of
country output fluctuations and growth shocks. Indeed, Fagiolo, Napoletano, and Roventini
(2008) show that fat-tailed, Exponential-Power densities can well proxy time-series distri-
butions of GDP and IP growth rates – computed employing a first-differencing filter – for
the U.S. and several other OECD countries1. Therefore, the findings presented in this note
complement such previous results suggesting that non-Gaussian fat tails are a distinctive and
robust feature of all distributions that proxy the deviations of business fluctuations around
the trend.

Second, the fact that fat tails are more likely to appear at relatively high frequency bands
associated to business-cycle periodicities implies that short-run models such as the DSGE
should, on the one hand, try to replicate this additional stylized fact and, on the other hand,
aim at delivering implications that are robust to non Gaussian shocks. Finally, our results
indicate that short-run phenomena (e.g. business inventory management) might be possible
candidates to provide convincing theoretical explanations of output fat-tail distributions.

1Fagiolo, Napoletano, and Roventini (2008) also show that fat tails in output growth-rate distributions
emerge independently of the measures of the aggregate output used, the densities employed in the estimation,
the length of time lags used to compute growth rates, and the presence of outliers, autocorrelation and
heteroschedasticity. See also Castaldi and Dosi (2009) for similar results from a cross-country perspective.

1



The paper is organized as follows: Section 2 describes the data and the methodology
employed. Section 3 presents the results. Section 4 concludes.

2. Data and Methodology

The main objects of investigation are the (natural) logarithms of U.S. GDP and in-
dustrial production (IP) time series. Quarterly GDP ranges from 1947Q1 to 2005Q3 (234
observations), monthly IP ranges from 1921M1 to 2005M10 (1017 observations). All series
are seasonally-adjusted and are provided by the St. Louis Federal Reserve Economic Data
(FRED) database2.

In order to observe the behavior of the series at business-cycle frequencies it is common
practice to detrend the series employing different filters. In this paper we take an agnostic
approach to this problem: none of the filtering methods employed is supposed to be the
correct one. Instead, following Canova (1998), we assume that all procedures are approxi-
mations that isolate different aspects of the secular and cyclical components of the series.
So, the question is not which method is the more appropriate, but whether the statistical
properties of the distributions of filtered time series are invariant to the filter employed. In
what follows, we shall employ four filters methods: first-differencing filter (FD), the Hodrick
and Prescott (1981) filter (HP), the Baxter and King (1999) bandpass filter (BK), and the
Christiano and Fitzgerald (2003) bandpass filter (CF).

After having removed the trend from output time series, we take a parametric ap-
proach to the detection of fat-tail behavior by fitting detrended output time series with
the Exponential-Power (EP) family of densities, also known as Subbotin distribution (for
details, see Bottazzi and Secchi, 2003a,b). The EP probability density function reads:

f(x; b, a,m) =
1

2ab
1
b Γ

(
1 + 1

b

)e− 1
b |x−m

a |
b

, (1)

where Γ (·) is the Gamma function.
The exponential-power density is a flexible statistical tool, which is characterized by a

scale parameter a, a location parameter m, and a shape parameter b. The latter determines
the fatness of the tails. Since the EP encompasses both Gaussian (b = 2) and Laplace (b = 1)
densities, the estimate of b (together with its standard deviation) can be employed to measure
how far the empirical distribution is from these benchmarks: the lower the estimate for b,
the fatter the tails. We jointly estimate the three parameters of the Subbotin density via
maximum likelihood (ML), employing the package SUBBOTOOLS3. In what follows, we
indicate by x̂ the ML estimate of the parameter x ∈ {a,m, b}.

3. Results

We start presenting the first four moments of U.S. output time series for the different
filters employed (cf. Table I). The mean levels are near zero, with the exception of FD filter.

2Freely available online at http://research.stlouisfed.org/fred2/.
3Available online at http://cafim.sssup.it/giulio/software/subbotools/. See Bottazzi (2004) for

details. For other theoretical and computational issues concerning this procedure, we refer to Bottazzi and
Secchi (2006).
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Table I: Summary Statistics of U.S. Output Time Series

Series Filter Mean Std. Dev. Skewness Kurtosis
GDP FD 0.0083 0.0098 -0.0500 4.3614
GDP HP 0.0000 0.0165 -0.6071 3.8007
GDP CF -0.0001 0.0158 -0.2505 3.4900
GDP BK 0.0007 0.0156 -0.3896 3.0602

IP FD 0.0031 0.0191 0.3594 14.6537
IP HP 0.0000 0.0707 -0.4691 6.4696
IP CF 0.0005 0.0716 -0.1029 6.0671
IP BK 0.0001 0.0655 -0.5437 7.2340

Moreover, the variance levels of HP, BK and CF filters are very large, relatively to the FD
filter. Furthermore, skewness levels are generally small, implying a marked symmetry of the
underlying distributions. Finally, the relatively large levels of kurtosis (especially for IP)
suggest that output distributions exhibit fat tails.

In order to better explore the leptokurtosis present in the data, we fit U.S. output distri-
butions with the Exponential-Power density. Maximum likelihood estimates, standard errors
and Cramér-Rao confidence intervals (for b̂ only) are reported in Table II4. We find that fil-
tered GDP and IP series display tails fatter than Gaussian ones5. The only exception is BK
filtered GDP series. Note also that for all filtered IP time series b̂ is smaller than 1, implying
tails even fatter than those of a Laplace distribution6. These results are statistically con-
firmed by Cramér-Rao confidence intervals (CI), which show that all CIs are below 2 (again,
BK filtered GDP is the only exception). The CI for IP series remains entirely to the left of
1. The foregoing results seem to confirm the findings of non-normality presented in Fagiolo,
Napoletano, and Roventini (2008) for the case of first-differencing filter (i.e., output growth
rates). In addition, the considerable fatter tails exhibited by IP distributions as compared
to GDP ones suggest that there might exist smoothing mechanisms at work (related to e.g.
services industry, automatic stabilizers, etc., cf. Zarnowitz, 1992) dampening the effects of
idiosyncratic firm shocks.

Note also that estimates for the shape parameters of BK, CF and HP time series are
greater than those of the FD filter. A possible explanation is that HP, BK and CF filters
wash away high-frequency fluctuations, which could be responsible for the emergence of
fat tails. In order to explore this hypothesis, we try to understand which frequencies in
the spectrum of the series are more conducive to the leptokurtosis observed in the data.
We address this issue by isolating different frequency bands in the spectrum of the series
and estimating the parameters of the Exponential-Power density in each single band. More
precisely, we bandpass filter output growth rates employing rolling bandwidths of 1 and 6.5

4Cramér-Rao intervals in Table II are given by b̂±2σ(b̂), where σ(b̂) is the standard error of b. Estimates
of the parameters of the symmetric EP density and their standard errors can be obtained by setting the
appropriate value of the “verbosity” parameter in the command subbofit, available in the SUBBOTOOLS
package. For more information we refer to the SUBBOTOOLS package user’s manual (see Bottazzi, 2004).

5Goodness-of-fit analysis, performed through several tests, do not typically reject the null hypothesis
that filtered output time series are Exponenial-Power distributed.

6The comparison between GDP and IP b̂ can be biased by the different econometric sample sizes em-
ployed. Nevertheless, in line with Fagiolo, Napoletano, and Roventini (2008), we find that (not shown)
estimates of b rise but are still lower than GDP ones if the same sample period is employed.
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Table II: Estimated Exponential-Power Parameters

Series Filter b̂ Std.Err. Cramér-Rao CIs â Std.Err. m̂ Std.Err.
GDP FD 1.1757 0.1454 0.8849 , 1.4665 0.0076 0.0005 0.0079 0.0005
GDP HP 1.3956 0.1798 1.0360 , 1.7552 0.0141 0.0010 0.0008 0.0011
GDP CF 1.5189 0.2001 1.1186 , 1.9191 0.0140 0.0010 0.0002 0.0012
GDP BK 1.8180 0.2656 1.2868 , 2.3492 0.0149 0.0011 0.0006 0.0017

IP FD 0.7026 0.0376 0.6274 , 0.7778 0.0095 0.0004 0.0032 0.0002
IP HP 0.7839 0.0428 0.6983 , 0.8695 0.0413 0.0017 0.0023 0.0011
IP CF 0.7210 0.0388 0.6434 , 0.7986 0.0402 0.0017 0.0025 0.0011
IP BK 0.7765 0.0438 0.6889 , 0.8641 0.0371 0.0016 0.0019 0.0010

years and we plot the ensuing b̂ together with their CI in Figure 1.
Let us begin with GDP. For the wider bandwidth of 6.5 years, b̂ are initially almost

constant and then start growing as the band moves towards lower frequencies. In partic-
ular, filtered series display tails fatter than Gaussian ones until the shifting band takes on
board periodicities higher than 35 quarters. The picture changes if we employ a one-year
bandwidth. In this case, b̂ remains initially constant, then starts growing and finally, after
a slight decrease, stays constant again. Anyway, leptokurtosis is present in the data up to
13 quarters. More generally, the analysis of filtered GDP seems to point out that relatively
higher frequencies in the business-cycle spectrum are more conducive to fat-tail distributions.
Filtered IP series distributions appear to be non Gaussian whatever band and bandwidth we
consider. In particular, shape parameters appear to be lower than one. Moreover, similarly
to GDP, fat tails are more marked at frequencies belonging to the relatively more irregular
part of the spectrum.

4. Concluding Remarks

In this note, we have investigated the statistical properties of the distributions of U.S. filtered
output time series. We have shown that fat tails in the distributions of output are robust
to different filtering methods employed for isolating the cyclical component in the series.
Moreover, we have performed a detailed frequency analysis finding that high and medium
frequencies in the spectrum (associated to relatively short business-cycle fluctuations) are
also the ones more conducive to fat tails in the data.

Our results bring further support to the claim that fat tails are a very robust feature
of detrended output distributions at the aggregate level, as they emerge also independently
from the particular filter applied to data. In addition, they suggest that business-cycle
models such as those belonging to the DSGE family, should try to reproduce this empirical
regularity, but their empirical performance should also be robust to the inclusion of shocks
drawn from fat-tail distributions. Finally, they appear to indicate that possible theoretical
explanations of output fat-tail distributions could be obtained studying short-run phenomena
such as business inventory management.

The present work could be extended in many ways. To begin with, one could perform the
same exercises in other countries taking into account different business-cycle chronologies in
the specification of bandpass filter parameters. Moreover, one could study the distributional
properties (and the relatively robustness as to different detrending techniques) of other im-
portant macroeconomic time series, such as consumption, investment, monetary aggregates,
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etc. In particular, the presence of fat tails in filtered inflation and unemployment time-series
distributions may be of particular interest for policy makers. Finally, one could examine the
distribution of disaggregated industrial production time series in order to try to understand
which sectors are more responsible for the fat-tail property observed in IP series.
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Figure 1: Estimated Exponential-Power b̂ Parameters vs. Shifting Frequency Bands (q)
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