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Abstract 

The present work investigates predictable components in size-based and value-weighted market portfolios excess 
returns from NYSE, AMEX, and NASDAQ stocks over US Treasury bills using various Gaussian and non-Gaussian 
versions of state space or unobserved components models. Our state space or unobserved components model 
improves on Conrad and Kaul (1988) by taking into account fat tails that are widely documented in the returns series. 
Statistical hypotheses tests show existence of predictable components in excess returns for most size-based portfolios 
(Cap-1 through Cap-9) even at percent level of significance. However, for value-weighted market and largest size-
based portfolio (Cap-10) the hypothesis tests fail to reveal existence of any predictable component. The results for 
most size-based portfolios are in conformance with Conrad and Kaul (1988) except the value-weighted market excess 
returns as well as the largest size-based portfolio (Cap-10). Conrad and Kaul (1988) isolated time-varying expected 
returns in weekly size-based excess returns using the same methodology but in a Gaussian setting. However, our 
results on value-weighted market excess returns are in line with Bidarkota and McCulloch (2004) who investigated 
value-weighted market excess returns in CRSP data.
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1.  INTRODUCTION 

The literature survey by Fama (1991) reveals that possible existence of predictable components 

in stock returns have been investigated extensively. This is because even a small level of 

predictability could lead to large economic gains through suitable trading strategies (Xu 2004). 

Investigation of the predictability in stock returns is imperative for portfolio allocation (Barberis 

2000) and it has implications for the models of asset pricing (Cecchetti, Lam, and Mark 1990). 

While modeling stock returns predictability, researchers focused on the two aspects of the stock 

returns predictability i.e. non-normality and volatility persistence. For instance, Akagri and 

Booth (1988), Jansen and de Vries (1991), Buckel (1995), Mantegna and Stainley (1995), and 

McCulloch (1997) including others maintained that non-normality is prevalent in stock returns. 

Similarly, Nelson (1991), Danielson (1994) Pagan and Schwartz (1990), Diebold and Lopez 

(1995), and Goose and Kroner (1995) showed that volatility persistence exists in stock returns 

over time. 

 

A number of studies that include Fama and Roll (1977), Cornew, Town, and Crowson (1984), 

and Nolan and Panorska (1997) introduced more generalized distributional models encompassing 

stable distribution to which normal distribution is a sub set. Empirical research demonstrates that 

models with such features are able to explain the behavior of economic and financial data more 

accurately. This enabled the empirical researchers to show that economic and financial data have 

leptokurtic distributions with fat tails. For example, Leitch and Paulson (1975), and Fielitz and 

Rozelle (1983) studied stock price behavior using stable distributions, Hall, Brorsen, and Irwin 

(1989) considered working on the distribution of futures prices, and McCulloch (1996a) worked 

with financial applications using stable distributions. However, normal distribution can be 

employed relatively more easily since many of its properties are well known. Therefore, despite 

a strong consensus on the presence of non-normality as well as volatility persistence in financial 

and economic time series data, models employed by most studies for stock returns predictions; 

do not encompass features that account for fat tails. Estimation inefficiencies would result when 

fat tails are not taken into account while modeling the stock excess return series. This could 

result in failure to detect predictability in stock returns even when it would exist.  

 

Conrad and Kaul (1988) modeled weekly returns on size-based portfolios returns using an 

unobserved components or state space model wherein the stochastic shocks in both the 

observation as well as the state equation were assumed to be identically and independently 

distributed (i.i.d.) normal. Further, they assumed stock returns to be time-varying and 

predictable, and modeled them to evolve from a first order autoregressive process. However, it is 

now well known that stock returns are typically non-Gaussian (McCulloch 1996a). Therefore, 

Bidatkota and McCulloch (2004) employed non-Gaussian models with Paretian Stable 

distribution for testing persistence in stock returns, Kiani (2006) for stock returns predictability 

in emerging market, and Kiani (2007) for predictability in stock returns in transition economies. 

The Paretian stable distributions have also been used to model fat tails in stock returns by a 

number of earlier studies such as Buckel (1995), Mantegna and Stanley (1995), and McCulloch 

(1997). Therefore, to account for potentially non-Gaussian nature of data, in the present study, 

returns series are modeled within the framework of Paretian stable distribution.  

 

There are a number of other parametric and non-parametric approaches that test predictability in 

the return series but most of these approaches do not consider encompassing features that 
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account for fat tails in the models employed for predicting stock excess returns. For example 

McQueen and Thorely (1991) used Markov chains to test stock returns predictability. In Markov 

chains the outcome from the current period experiment is assumed to affect the outcome of the 

next period with some probability and so on. Similarly, in non-parametric approaches for 

example, the artificial neural networks appear to be a candidate for predicting possible existence 

of stock returns but neural networks are under heavy criticism for being black boxes (not having 

an explicit functional form) and overfitting issues associated with them, although, following 

Kiani (2005) overfitting could be mitigated by careful construction of a neural network 

architecture that enables neural networks to be  suitable forecasting models for predicting stock 

excess returns. However, in the present study, the predictable components are estimated as model 

parameters in the state space model employed, which is expected to do a better job of extracting 

the signals of the predictable component from all the size-based portfolio excess return series as 

well the value-weighted  market excess returns series employed. 

 

The present study investigates possible existence of predictable components (if any) in monthly 

size-based and value weighted Center of Research of Security Prices (CRSP) in American Stock 

Exchange (AMEX), New York Stock Exchange (NYSE), and the National Association of 

Securities Dealers Automated Quotation (NASDAQ) stocks prices over the relevant risk free 

rates i.e. U.S. Treasury bill rates using Gaussian state space models due to Conrad and Kaul 

(1988), and their improved versions (non-Gaussian) that account for fat tails in the returns series. 

The errors in the non-Gaussian space state models are assumed to come from non-normal family, 

therefore, the recursive algorithm from Sorenson and Aspatch (1971) that was further modified 

by Kitawaga (1987) is employed for estimation of the non-Gaussian state space or unobserved 

component models.  

 

The remaining study is organized as follows. Section 2 elaborates the econometric models used, 

and estimation results as well as hypotheses of interest are discussed in section3. Finally, section 

4 incorporates conclusion. 

 

2.  ECONOMETRIC MODELS 

The most general state space or unobserved component model i.e. model1, employed in this 

research, incorporates non-normality as well as predictable components. Restricted versions of 

the most general model that exclude predictable components and fat tails are also employed. The 

estimates from these restricted models are used for testing various hypotheses of interest. 

Similarly, the Gaussian versions of the state space model with and without predictable 

components are also estimated. The most general model and its restricted versions employed in 

this study are elaborated in the following sub-sections. 

 

2.1.  Model 1: Stable Model with Predictable Components 

The following most general unobserved component model is employed to detect possible 

existence of variations that might persist in excess returns series. The model for forecasting mean 

returns is a state space or unobserved component model that encompasses features like non-

normality and predicable component (if any). The most general model of this type also termed as 

model 1 is shown in the following two Equations. 

 
ttt xr ε+= , 

ttt zc 1~ε , ( )1,0..~1 Sdiiz t
               ( )1  

 ( ) ( ) ttt xx ηµφµ +−=− −1
, 

ttt zcc 2~ ηη , ( )1,0...~ Sdiitη            ( )2  
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where, 
tr  is the observed excess return,

tx  is unobserved predictable component, and 
tz1
and 

tz2
are independent white noise processes. A random variable X  is said to have a symmetric 

stable distribution ( )cS ,0α  if its log-characteristic function can be expressed 

as ( )[ ] α
δ tctiiXtExp −=ln . The parameter ( )∞∞−∈ ,δ  is the location parameter that shifts the 

distribution either to the left or to the right along the real line, [ ]( )∞∈> ,00 cc  is the scale 

parameter that contracts or expands the distribution, and ]2,0(∈α  is the characteristic exponent 

that governs the tail behavior. Smaller values of the characteristic exponent α indicate thicker 

tails. However, when the characteristic exponent (α ) equals to 2   normal distribution prevails 

with a finite variance that equals to 22c . 

 

Stable distributions have thick tails which enhances the likelihood of the occurrences of the large 

shocks. Therefore, big market crashes as well as booms are expected more in this setup than in a 

Gaussian framework. Mandelbrot (1963) recommended the use of the stable distributions for 

modeling fat tails, and McCulloch (1996a) provided a comprehensive survey on the financial 

applications of the stable distributions. 

 

Any time variation in (conditional) mean excess returns is because of the presence of the 

predictable component tx  which is assumed to follow a simple AR (1) process. The unobserved 

component or state space model for predicting excess returns is a simple AR (1) process plus 

noise. It is related to the unobserved component mean-reverting model for stock prices due to 

Summers (1986). Mean reversion was also studied by Paresh and Prasad, (2007). 

 

A version of the unobserved components model given in Equations 1 and 2 that incorporates 

time-varying volatility was estimated by Bidarkota and McCulloch (2004), but in the present 

study, attempts to estimate such conditionally heteroskedastic versions of the unobserved 

components or state space model with CRSP data by maximum likelihood estimation failed in 

five out of the eleven series employed. Therefore, further discussion on time-varying volatility is 

obviated throughout the text. 

 

2.2.  Model 2: Stable Model without Predictable Components 

Model 2 is a stable model that does not include features to account for predictable components in 

the excess return series employed. This model is obtained restricting predictable components in 

excess return series ( 0=φ ) in the most general model (i.e.model1). The resulting model 2 is 

shown in the following Equation. 

 ttt xr ε+= , ttt zc~ε , ( )1,0..~ Sdiiz t      ( )3  

As shown in the Equation 3  above, the error terms tε  and tη  are not separately identified, 

therefore the signal to noise ratio ( 0=ηc ) is also not identified. As it will be clear later, this will 

cause difficulty in constructing various hypothesis of interest using likelihood ratio test statistics. 

 

2.3.  Model 3: Gaussian Model with Predictable Components 

A Gaussian version of the unobservable component model encompassing predictable component 

that was also employed by Conrad and Kaul (1988) can be shown by the following Equations. 
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 ttt xr ε+= , tt zc 12~ε , ( )1,0..~1 Ndiiz t     ( )4  

 ( ) ( ) ttt xx ηµφµ +−=− −1
,   

tt zc 22~η    ( )1,0...~ Ndiitη   ( )5  

Model 3  is a Gaussian model that includes features to account for predictable component in 

excess return series. This model is obtained by restricting characteristic exponent ( 2=α ) in the 

most general model i.e. model1 and recognizing that when α equals 2 the variance of a stable 

random variable ( )cS ,0α  would reduce to 22c . Unlike model 2 , model 3has an observation 

Equation shown in Equation 4 , and a state Equation that is presented in Equation 5 . Therefore, 

contrary to model 2 , the error terms tε , and tη  are identified separately in this model. 

 

2.4.  Model 4: Gaussian Model without Predictable Components 

The Gaussian version of the state space model for excess returns with no predictable component 

takes on the following form since the model is obtained restricting predictable component 

( 0=φ ) in model 3 . This causes the state Equation to disappear from the model and the resulting 

model which encompasses an observation equation only can be shown in Equation 6 . 

ttt xr ε+= , tt zc2~ε , ( )1,0..~ Ndiiz t                ( )6  

Again like model 2 , the error terms tε , and tη  are not separately identified in model 4  as well 

which would cause difficulties in construction of various hypotheses of interest. 

 

2.5.  Estimation Issues 

Sorenson and Alspach (1971) developed a filtering algorithm to estimate non-Gaussian state 

space models. This algorithm provides optimal filtering and predicting densities for any given 

distribution for errors and a framework for computing the log likelihood function. The closed 

form analytical expressions for the recursive equations for computing the filtering and predicting 

densities are generally intractable except in very special cases. For example when the above 

Equations (Equation 1 and 2) are linear with errors distributed normally, the integrals can be 

evaluated analytically and the algorithm reduces to well known Kalman Filter. However, when 

the errors are stably distributed, as is the case in this study, the integrals can not be analytically 

evaluated. These integrals can be numerically evaluated as is done in Bidarkota and McCulloch 

(2004) or alternatively using Monte Carlo integration techniques due to Durbin and Koopman 

(2000). The stable distributions can be evaluated by fast numerical approximations as in 

McCulloch (1996b). The present study employs this framework for analytical evaluation of the 

integrals. 

3.  EMPIRICAL RESULTS 

The following sub-section elaborates data sources, estimation results as well as hypotheses of 

interests that include normality test, and test for predictable component in addition to discussions 

on the study results. 

 

3.1  Data Sources 

The present study employs ten size-based portfolios returns from NYSE, AMEX, and NASDAQ 

stock prices. The smallest size portfolio of stock returns is denoted by Cap-1 whereas the largest 

portfolio of stock returns is denoted by Cap-10. The portfolio excess returns for all the series are 

the differences between the portfolio prices over the relevant risk free rates i.e. U.S. Treasury bill 
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rates. The market value-weighted CRSP excess returns
1

 that are calculated from the value-

weighted market portfolio returns from NYSE, AMEX, and NASDAQ stock prices over the U.S. 

Treasury bills are also included in the analysis. The portfolio returns are extracted from monthly 

CRSP data from January 1962 to December 2002. 

 

3.2  Estimation Results 

The parameter estimates for models 1 through 4  are shown respectively in Tables1 to 4 . In 

these Tables the estimated excess returns are expressed as percentages per annum. The maximum 

likelihood estimates (MLE) of Models 1 and 2 are presented respectively in Tables 1 and 2. All 

estimates reported in Tables1 through 4 are rounded off to second decimal place. Estimates of 

the mean excess returns ( µ ) for the value-weighted market portfolio excess returns is 9.37 

percent per annum and for the size-based portfolios excess returns the estimates for µ  ranges 

between 11.22 for Cap-8 to 14.59 for Cap-10. The estimate for the AR coefficient (φ ) for the 

value-weighted market excess returns is 0.18, and for size-based portfolio excess returns, the 

estimates for AR coefficient (φ ) ranges from 0.04 for Cap-2 to 0.91 for Cap-6. The estimate for 

the signal-to-noise ratio ( )ηc  is 0.04 for the value-weighted market portfolio excess returns and 

for size-based portfolios the estimate of ηc  ranges from 0.00 for Cap-9 to 5.65 for Cap-1. The 

estimate for the characteristic exponent α  for the value-weighted market excess returns is 1.88 

whereas for size-based portfolios excess returns the value of the characteristic exponent α  range 

between 1.5 for Cap-1 to 1.88 for Cap-8 showing non-Gaussian behavior in all the series. 

Likewise, the remaining parameter estimates included in the models show vide variation across 

various portfolios.  

 

3.3.  Hypotheses Tests 

The chief hypothesis of this study is no predictable component versus the alternate hypothesis of 

predictable components in all the excess returns series employed. Additional null hypothesis of 

normality versus the alternative hypothesis of non-normality is also tested in non-Gaussian 

settings in all the series. Likewise, the hypothesis of no predictable components versus the 

alternative hypothesis of predictable components is also tested assuming that the errors for each 

of the series are normally distributed. These hypotheses tests are elaborated in the following sub-

sections. 

 

3.3.1.  Test for Normality 

The test for normality is based on the null hypothesis of normality against the alternative 

hypothesis of non-normality in all the series. Model 3 is the null model for this test that is 

obtained by restricting non-normality ( 2=α ) in the most general model i.e. model 1. The null 

hypotheses for this test for each of the series is tested using likelihood ratio (LR) test statistic 

which is calculated from the log likelihood estimates from model 1 and model 3. The LR test 

statistics for all the series are reported in Table 1. In this Table, row 1 in column 8 shows the LR 

test statistic for normality test for the value-weighted market excess returns. The LR test 

statistics for normality test for the size-based market excess returns for the smallest size-based 

                                                 
1
 Thanks are due to Prasad V. Bidarkota at Florida International University for     providing data 

for this study. 
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portfolios (Cap-1) to the largest size-based portfolio (Cap-10) are also presented in this Table. 

The test statistics for Cap-1 through Cap-10 are shown respectively in rows 2 -11 in column 8.  
The LR test statistic for normality hypothesis has a non-standard distribution, since the null 

hypothesis lies on the boundary of the admissible values for the characteristic exponent ( )α , and 

hence, the standard regularity conditions are not satisfied. Hypotheses testing when the standard 

regularity conditions are not satisfied are given in Andrews (2001). Therefore, the critical values 

from simulations in McCulloch (1997) are employed for evaluating the test statistics for the 

normality tests. Using these critical values, normality is easily rejected in all the series. However, 

exclusion of predictable component ( )φ  from the non-Gaussian state space models does not alter 

the results for normality test. 

 

3.4.  Test for Predictable Components 

The null hypothesis for this test is no predictable components in excess returns where, the 

alternative hypothesis is the existence of predictable component in the return series. The 

restricted model under the null hypothesis is obtained by setting 0=φ  in Model1. In this case, 

the two shocks, 
tε  and 

tη  are not separately identified. Therefore, the standard likelihood ratio 

(LR) test is not applicable because the signal to noise ratio ( )ηc  is also not identified ( )0=ηc . 

 

Hansen (1992) developed a bound for asymptotic distribution of a standardized likelihood ratio 

test statistic that is applicable in similar situations. However, the present work refrains using it 

because the use of Hansen’s test may result in under rejection of the null hypothesis and a 

subsequent loss of power, since Hansen himself noted that his test provides a bound for 

asymptotic distribution as against the actual asymptotic distribution itself. Therefore, the 

estimates from the Gaussian version of the null and the alternative models are employed to 

generate small sample p-values from Monte Carlo simulations for each of the series because 

estimation of the alternative Model 1 in the present study is computationally very intensive. 

 

The LR test statistic for the null hypothesis of no time-varying predictable components in excess 

returns for each of the series is reported in the last column of the Table1. In this Table, row 1 in 

column 7 shows likelihood ratio (LR) test statistic for no predictable component for the value-

weighted market excess returns. Similarly, the LR test statistics for the ten size-based portfolios 

i.e. Cap-1 to Cap-10 are shown respectively in rows 2 -12 in column 7 of this Table. The small 

sample p-values that are obtained from Monte Carlo simulations for each of the series are 

reported beneath each LR test statistic in parentheses. 

 

The predictable component shows one-step ahead forecast of future excess returns. 

Plotting ( )tt rrrxE ,......,,| 21  along with its estimated standard errors for all the portfolios (plots 

not shown for brevity) it transpires that the plots for the value-weighted market excess returns 

(Value-w) are similar to those of the largest size-based portfolio excess returns (Cap-10). There is 

much variability for the remaining size-based portfolio excess returns (Cap-1- Cap-9) which 

increases the amplitudes of the positive or the negative peaks of the excess returns. This 

variability in amplitude of the excess returns increases with the decrease in the firm size and vice 

versa, and finally, such variations mitigate for the largest size firm’s excess return series. 

However, the potential of elevated excess return in small firms is easily captured using the signal 

extraction approach using state space or unobserved component models. 
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The study results from the non-Gaussian state space models show statistically significant 

evidence of predictable components in excess returns in nine size-based portfolios i.e. Cap-1 

through Cap-9 at all levels of significance. However, the null of no predictable component could 

not be rejected in the value-weighted market excess returns and the largest size-based portfolio 

i.e. Cap-10 even at 10  percent level of significance. 

 

In addition to testing possible existence of predictable component in non-Gaussian setting, 

persistence of predictable component is also tested in Gaussian state space models. The LR test 

statistic calculated from the likelihood estimates from Gaussian model 1 and model 3 for all the 

series are reported in Table 3. In this Table, rows 1 in column 7 shows the LR test statistic for 

no-predictable components for the value-weighted market excess returns. The LR test statistics 

for the size-based portfolio excess returns for Cap-1 through Cap-10 are shown respectively in 

rows 2 -11 in the same column. Small sample p-values generated from Monte Carlo simulations 

for each of the series are placed beneath each test statistic in parenthesis. 

 

The results from Gaussian state space models show statistically significant evidence of 

predictable components in size-based portfolios i.e. Cap-2, Cap-3, and Cap-4 at all levels of 

significance. However, the results for the remaining size-based portfolio excess returns and the 

value-weighted market excess returns do not show statistically significant predictable component 

even at 10  percent level of significance.  

 

3.5.  Discussions on Results 

The study results from non-Gaussian state space or unobserved component models reveal 

statistically significant evidence of predictable components in all the size-based portfolio excess 

returns i.e. Cap-1 to Cap-9 in exception of the largest size-based portfolio excess returns i.e. 

Cap-10. A plausible reason for this variation could be an inverse relationship between the stock 

returns predictability and the firm size (Conrad and Kaul 1988). However, the study results for 

the value-weighted market excess returns do not show any evidence of persistent predictable 

signals in excess returns which is in line with Bidarkota and McCulloch (2004) who also studied 

predictable components in value-weighted market excess returns in CRSP data. 

 

Using Gaussian unobserved component model the findings of the present work do not show any 

evidence of persistence predictable signal in value-weighted market excess returns as well as in 

seven out of ten size-based portfolio excess returns. Therefore, compared to the results reported 

in the preceding sub-sections that are obtained from the non-Gaussian state space models, these 

results changed significantly. A plausible reason for this variation can be attributed to exclusion 

of non-normality from the employed state space model although non-normality is widely 

documented in the literature (McCulloch 1996a). This can be one of reasons why predictions 

from the non-Gaussian state space models for the largest size-based excess returns are in sharp 

contrast with Conrad and Kaul (1988). Conrad and Kaul (1988) also used state space models 

with the assumptions that the errors follow a normal distribution. However, the present work 

employs non-Gaussian state space models with the assumptions that the errors follow a non-

normal distribution with fat tails since the assumption of non-normality is widely documented in 

the wide body of the recent empirical literature. 
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4.  CONCLUSION 

This research employs non-Gaussian state space or unobserved components models for 

discovering possible existence of predictable components in 10 size-based as well as the value-

weighted market excess returns in AMEX, NYSE, and NASDAQ monthly stock prices over the 

risk free rates i.e. the U.S. Treasury bills rates. The unobserved component model used 

encompasses non-normality and predictable component to foretell any variation that might be 

present in the stock excess return series. This model is an improvement over the models 

employed by previous studies since it includes features that account for fat tails in the return 

series which is in line with the developments in the recent empirical literature. In addition to 

non-Gaussian model, Gaussian state space models with and without predictable components are 

also employed prediction from which is used for testing various hypotheses of interest at 

Gaussian settings. 

 

The study results reveal statistically significant evidence of predictable components in monthly 

excess return series for the most size-based (Cap-1 through Cap-9) portfolios excess returns. 

However, the results for the value-weighted market excess returns as well as the largest size-

based portfolio excess returns (Cap-10) from NYSE, AMEX, and NASDAQ stocks over the U.S. 

Treasury bills are in sharp contrast. The findings for the nine size-based portfolios (Cap-1 

through Cap-9) are in conformance with Conrad and Kaul (1988) in exception of the largest size-

based portfolio (Cap10) the results for which are in sharp contrast.  

 

Conrad and Kaul (1988) detected significant predictable components in weekly returns on size-

based portfolios assuming that errors are normally distributed. Likewise, the results from the 

present work for the monthly value-weighted market excess returns are in line with Bidarkota 

and McCulloch (2004), who failed to reveal significant predictable component in value weighted 

market excess returns in CRSP data for NYSE, AMEX, and NASDAQ returns over U.S. 

Treasury bills. However, the non-Gaussian state space or unobserved component models 

encompassing features to account for fat tails in the return series employed in the present study 

are powerful computational models that are able to extract predictable signals or information on 

stock return predictability in nine out of the ten size-based portfolio excess return series 

employed. 

 

 

REFERENCES 

Andrews, D.W.K. (2001) “Testing When a Parameter is on the Boundary of the Maintained 

Hypothesis” Econometrica 69, 683-734. 

 

Akgiray, V., and G. Booth (1988) “The Stable Law Model of Stock Returns” Journal of Business 

Economics Statistics 6, 51-7. 

 

Barberis, N. (2000) “Investing for the Long Run When Returns are Predictable” Journal of 

Finance 54, 225-264. 

 

Bidarkota, P.V., and J.H. McCulloch (2004) “Testing for Persistence in Stock Returns with 

GARCH-Stable Shocks” Quantitative Finance 4, 256-265. 



 9 

 

Buckle, D. J. (1995) “Bayesian Inferences for Stable Distribution” Journal of American 

Statistical Association 90, 605-13. 

 

Cecchetti, S.G., P-s. Lam, and N.C. Mark (1990) “Mean reversion in equilibrium asset prices” 

American Economic Review 80, 398-418. 

 

Conrad, J., and G. Kaul (1988) “Time-Variation in Expected Returns” Journal of Business 61, 

409-425.  

 

Cornew, R. W., D. E. Town, and L. D. Crowson (1984) “Stable Distributions, Futures Prices and 

the Measurement of Trading Performance” Journal of Futures Markets 4, 531-57. 

 

Danielsson, J. (1994) Stochastic Volatility in Asset Prices Estimation with Simulated Maximum 

Likelihood” Journal of Econometrics 64, 315-400. 

 

Diebold, F. X., and J. A. Lopez (1995) Modeling Volatility Dynamics Macroeconomics: 

Developments, Tensions and Projects ed, K Hoover (Boston, MA: Kulwer-Academics). 

 

Durbin, J., and S. J. Koopman (2000) “Time Series Analysis of Non-Gaussian Observations 

Based on State Space Models from Both Classical and Bayesian Perspectives” Journal of The 

Royal Statistical Society Series B, 62, Part 1, 3-56. 

 

Fama, E.F. (1991) “Efficient Capital Markets: II” The Journal of Finance XLVI, 1575-617. 

 

Fama, E., and R. Roll (1971) “Parameter Estimates for Symmetric Stable Distributions” Journal 

of American Statistical Association 66, 331-338. 

 

Fielitz, B. D., and J. P. Rozelle (1983) “Stable Distributions and the Mixtures of Distributions 

Hypothesis for Common Stock Returns” Journal of American Statistical Association 78, 28-36. 

 

Goose, D., and K. F. Kroner (1995) “The Relationship Between GARCH and Symmetric Stable 

Processes, Finding the Source of Tails in Financial Data” Journal of Empirical Finance 2, 225-

51. 

 

Hall, J. A., B. W. Brorsen, and S. H. Irwin (1989) “The Distribution of Futures Prices: A Test of 

the Stable Paretian and Mixture of Normal Hypotheses” Journal of Financial and Quantitative 

Analysis 21, 105-116. 

 

Hansen, B. E. (1992) “The Likelihood Ratio Test Under Nonstandard Conditions: Testing the 

Markov Switching Model of GNP” Journal of Applied Econometrics 7, S61-S82. 

 

Jensen, D., and C. de Vries (1991) “On the Frequency of Large Stock Returns: Putting Booms 

and Busts into Perspective” Review of Economics and Statistics 73, 18-24.  

 

Kiani, K. M. (2007) “Stock Returns Predictability in Transition Economies” Transition 



 10 

Studies Review 14, 93-104. 
 

Kiani, K. M. (2006) “Predictability in Stock Returns in an Emerging Market: Evidence 

from KSE 100 Stock Price Index” Pakistan Development Review 45, 368-381.  

 

Kiani, K. M. (2005) “Detecting Business Cycle Asymmetries Using Artificial Neural 

Networks and Time Series Models” Computational Economics 26, 65-89.  

 

Kitagawa, G. (1987) “Non-Gaussian State Space Modeling of Nonstationary Time Series” 

Journal of the American Statistical Association 400, 1032-63. 

 

Leitch, R. A., and A. S. Paulson (1975) “Estimation of Stable Law Parameters: Stock Price 

Behavior Application” Journal of American Statistical Association 70, 690-697. 

 

Mandelbrot. B. (1963) “The Variation of Certain Speculative Prices” The Journal of Business 36, 

394-425. 

 

Mantegna, R. N., and H. E. Stanley (1995) Scaling Behavior in the Dynamics of An Economic 

Index” Nature 376, 46-9. 

 

McCulloch, J. H. (1997) “Measuring Tail Thickness in Order to Estimate the Stable Index α  : A 

critique” Journal of Business and Economic Statistics 15, 74-81. 

 

_________ (1996a) “Financial Applications of Stable Distributions” in: G.S. Maddala and C.R. 

Rao (eds.), Handbook of Statistics, Vol.14 (Elsevier, Amsterdam). 

 

_________ (1996b) “Numerical Approximation of the Symmetric Stable Distribution and 

Density” in R. Adler, R. Feldman, and M.S. Taqqu (eds.), A Practical Guide to Heavy Tails: 

Statistical Techniques for Analyzing Heavy Tailed Distributions, Boston:  Birkhauser. 

  

McQueen, G., and S. Thorley (1991) “Are Stock Returns Predictable?” Journal of Finance 66, 

239-63. 

 

Narayan, Paresh and Arti Prasad, (2007) "Mean Reversion in Stock Prices: New Evidence from 

Panel Unit Root Tests for Seventeen European Countries." Economics Bulletin 3,1-6. 

 

Nelson, D.B. (1991) Conditional Heteroskedasticity in Asset Returns: A New Approach” 

Econometrica 59, 347-70. 

 

Nolan, J. P. (1997) “Numerical Computation of Stable Densities and Distribution Functions” 

Communications in Statistics, Stochastic Models 13, 759-774. 

 

Pagan, A. R., and G.W. Schwert (1990) Alternative Models for Conditional Stock Volatility” 

Journal of Econometrics 45, 267-90. 

 

Sorenson, H.W., and D.L. Alspach (1971) Recursive Bayesian Estimation Using Gaussian sums” 

Automatica 7, 465-79. 



 11 

Summers, L. H. (1986) Does the Stock Market Rationally Reflect Fundamental Values?” 

Journal of Finance 41, 591-601. 

 

Xu, Y. (2004) Small Levels of Predictability and Large Economic Gains” Journal of Empirical 

Finance 11, 247-275. 

 

 

 

 

 

 

 

 

Table 1:  Model 1 Estimates: Stable Models with Predictable Components 

 

Portfolio 

 

α  
 
µ  

 

c  
 

ηc  

 

φ  

Log  

Likelihood

 

 

( )2=αLR

 

 

( )0== ηφ cLR

 

 

Value-w 

1.88 

(0.00) 

9.37 

(0.77) 

35.11 

(1.08) 

0.04 

(0.02) 

0.17 

(0.07) 

 

-2716.69 

 

18.08 

0.34 

(0.79) 

 

Cap-1 

1.53 

(0.05) 

1.74 

(4.63) 

8.19 

(4.72) 

5.65 

(3.08) 

0.30 

(0.04) 

 

-2940.04 

 

157.02 

67.70 

(0.00) 

 

Cap-2 

1.57 

(0.07) 

12.45 

(4.19) 

9.73 

(3.74) 

4.49 

(1.65) 

0.04 

(0.04) 

 

-2889.26 

 

81.44 

38.86 

(0.00) 

 

Cap-3 

1.63 

(0.23) 

12.65 

(4.19) 

9.96 

(4.80) 

4.31 

(1.99) 

0.26 

(0.04) 

 

-2865.55 

 

69.20 

46.66 

(0.00) 

 

Cap-4 

1.73 

(0.08) 

13.13 

(4.02) 

19.29 

(11.39) 

1.86 

(1.54) 

0.34 

(0.13) 

 

-2854.63 

 

59.04 

38.86 

(0.00) 

 

Cap-5 

1.76 

(0.07) 

14.16 

(3.67) 

16.31 

(2.75) 

2.67 

(0.43) 

0.21 

(0.04) 

 

-2845.69 

 

72.82 

29.10 

(0.00) 

 

Cap-6 

1.77 

(0.04) 

14.22 

(3.60) 

11.05 

(4.23) 

3.91 

(1.47) 

0.91 

(2.11) 

 

-2841.72 

 

60.16 

28.62 

(0.00) 

 

Cap-7 

1.77 

(0.20) 

14.33 

(3.36) 

14.18 

(4.13) 

2.99 

(0.85) 

0.18 

(0.04) 

 

-2830.83 

 

53.18 

18.34 

(0.00) 

 

Cap-8 

1.83 

(0.08) 

14.59 

(3.17) 

3.36 

(1.72) 

0.21 

(6.34) 

0.15 

(0.04) 

 

-2802.57 

 

47.84 

16.28 

(0.00) 

 

Cap-9 

1.88 

(0.06) 

12.69 

(0.72) 

39.54 

(1.48) 

0.00 

(0.00) 

0.09 

(0.00) 

 

-2778.77 

 

36.02 

6.69 

(0.00) 

 

 

Cap-10 

 

1.87 

(0.12) 

 

11.22 

(2.78) 

 

33.77 

(1.78) 

 

0.08 

(0.05) 

 

0.98 

(0.09) 

 

 

-2704.38 

 

 

17.98 

 

1.56 

(0.29) 

Notes on Table 1 

1. The following unobserved component or state space model with non-normality (stable 

model) is employed to estimate the results shown in this Table. 
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ttt xr ε+= ,  
ttt zc 1~ε ,  ( )1,0~1 αSiidz t

   ( )a1  

( ) ( ) ttt xx ηµφµ +−=− −1
,  ttt zcc 2~ ηη ,  ( )1,0~1 αSiidz t

 ( )b1  

2. The model is estimated using value weighted market excess returns (Value-w), and ten 

size-based portfolio returns where the smallest size-based portfolio is denoted by Cap-1 

and the largest size-based portfolio is termed as Cap-10. The model is estimated with 

eleven different excess return series where the variables estimated for each of the series 

are the characteristic exponentα , mean excess returns µ, scale ratio c , signal-to-noise 

ratio ηc , and AR coefficientφ  of the model that are shown respectively in columns 2  to 

6 ,  and the log likelihood estimates from the model are shown in column 7 .  

3. All estimates are rounded off to the second decimal place. and the Hessian-based 

standard errors for the parameter estimates are reported in parenthesis beneath each 

parameter estimate. 

4. Column 8 show likelihood ratio (LR) test statistics for normality test ( )[ ]2=αLR  which 

gives the value of the likelihood ratio test statistic for the null hypothesis of normality. 

The LR test statistics for this test are calculated from log likelihood estimates from model 

1 and its restricted version (model 2 ) that restricts non-normality in it.  

5. The small-sample critical value for testing null of normality at the 0.01 significance level 

for a sample size of 300 is reported to be 4.764 from simulations in McCulloch (1997). 

6. The last column in the Table (column 9 ) shows the likelihood ratio (LR) test statistic for 

testing no-predictable components ( )[ ]0== ηφ cLR  in the excess return series. The 

( )0== ηφ cLR  for this test gives the value of the likelihood ratio test statistic. It is a test 

for no predictable components in excess returns. Under this null, the distribution of the 

LR test statistic is non-standard. The LR test statistics for this test are calculated from log 

likelihood estimates from model 1 and its restricted version (model 2 ) that restricts 

predictable components (φ ) in it.  

7. The null of no-predictable component in the returns series is tested using p-values 

generated by estimating Gaussian versions of Models 1 and 2 with data simulated from 

the estimated Gaussian Model 2 are reported in parentheses.  
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Table 2:  Model 2 Estimates: Stable Models without Predictable Components 

 

 

Portfolio 

 

 
α  

 

 
µ  

 

 
c  

 
Log  

Likelihood  

 

Value-w 

1.87 

(0.06) 

12.12 

(2.29) 

35.13 

(1.44) 

 

-2973.89 

 

Cap-1 

1.66 

(0.08) 

15.55 

(3.53) 

52.15 

(2.47) 

 

-2793.89 

 

Cap-2 

1.71 

(0.06) 

14.66 

(3.23) 

48.23 

(2.11) 

 

-2919.83 

 

Cap-3 

1.73 

(0.09) 

14.12 

(3.09) 

46.06 

(2.17) 

 

-2891.88 

 

Cap-4 

1.79 

(0.07) 

14.22 

(3.03) 

45.84 

(1.96) 

 

-2874.06 

 

Cap-5 

1.82 

(0.06) 

14.79 

(2.98) 

5.17 

(1.80) 

 

-2860.24 

 

Cap-6 

1.83 

(0.06) 

14.85 

(2.96) 

44.94 

(1.81) 

 

-2855.16 

 

Cap-7 

1.83 

(0.05) 

14.76 

(2.86) 

43.64 

(1.71) 

 

-2840.02 

 

Cap-8 

1.86 

(0.06) 

14.79 

(2.75) 

41.74 

(1.63) 

 

-2810.71 

 

Cap-9 

1.87 

(0.06) 

13.97 

(2.59) 

39.76 

(1.52) 

 

-2882.22 

 

Cap-10 

1.88 

(0.07) 

11.31 

(2.26) 

34.44 

(1.41) 

 

-2705.16 

 

Notes on Table 2 

1. See notes on Table 1. 

2. The following unobserved component or state space model with non-normality (stable 

model) is employed to estimate the results shown in this Table: 

tttr εµ += ,  ttt zc~ε ,  ( )1,0~ αSiidz t    ( )a1  

2.  The model is estimated using value weighted market excess returns (Value-w), and ten 

size-based portfolio returns where the smallest size-based portfolio is denoted by Cap-1 

and the largest size-based portfolio is termed as Cap-10. The variables estimated for each 

of the series are the characteristic exponentα , mean excess returns µ, and scale 

ratio c that are shown respectively in columns 2  to 4 ,and finally the log likelihood 

estimates from the model are shown in column 5 . 

 

3. All estimates are rounded off to the second decimal place. Hessian-based standard errors 

for the parameter estimates are reported in parentheses. 
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Table 3:  Model 3 Estimates: Gaussian Models with Predictable Components 

  

Portfolio 

 
µ  

 

c  
 

ηc  

 

φ  

Log  

Likelihood  

 

( )0== ηφ cLR  

  

Value-w 

11.08 

(2.41) 

38.19 

(1.20) 

0.00 

(0.25) 

-0.31 

(1.58) 

 

-2725.73 

0.40 

(0.79) 

 

Cap-1 

23.37 

(4.43) 

68.28 

(2.15) 

0.00 

(0.01) 

0.93 

(0.07) 

 

-3018.55 

1.74 

(0.27) 

 

Cap-2 

17.35 

(4.85) 

175.37 

(681.62) 

0.33 

(1.27) 

0.26 

(0.04) 

 

-2929.98 

33.94 

(0.00) 

 

Cap-3 

14.81 

(4.46) 

89.42 

(512.77) 

0.61 

(3.48) 

0.23 

(0.04) 

 

-2903.15 

27.28 

(0.00) 

 

Cap-4 

14.51 

(4.25) 

61.12 

(1016.49) 

0.86 

(14.23) 

0.22 

(0.04) 

 

-2884.15 

25.68 

(0.00) 

 

Cap-5 

13.74 

(3.27) 

51.98 

(1.64) 

0.01 

(0.15) 

0.14 

(1.89) 

 

-2882.10 

0.02 

(0.81) 

 

Cap-6 

14.17 

(3.29) 

51.03 

(1.59) 

0.01 

(0.08) 

0.91 

(0.13) 

 

-2871.79 

0.94 

(0.43) 

 

Cap-7 

13.59 

(2.77) 

49.59 

(1.56) 

0.00 

(0.15) 

0.91 

(0.09) 

 

-2857.42 

1.12 

(0.38) 

 

Cap-8 

12.99 

(2.94) 

46.65 

(1.47) 

0.01 

(0.28) 

-0.01 

(0.00) 

 

-2826.49 

0.22 

(0.72) 

 

Cap-9 

12.54 

(2.78) 

43.98 

(1.38) 

0.01 

(0.29) 

0.063 

(0.00) 

 

-2796.78 

0.20 

(0.79) 

 

Cap-10 

10.65 

(2.39) 

36.74 

(1.66) 

0.16 

(0.09) 

0.35 

(0.00) 

 

-2713.37 

0.48 

(0.59) 

Notes on Table 3 

1.  The following model with predictable component is employed to estimate the results 

shown in this Table: 

ttt xr ε+= ,  tt cz12~ε ,  ( )1,0~1 Niidz t     ( )a3  

( ) ( ) ttt xx ηµφµ +−=− −1
,  ttt zcc 22~ ηη ,  ( )1,0~1 Niidz t

  ( )b3  

2.  All estimates are rounded off to the second decimal place.  

3. The model is estimated using value weighted market excess returns (Value-w), and ten 

size-based portfolio returns where the smallest size-based portfolio is denoted by Cap-1 

and the largest size-based portfolio is termed as Cap-10. The variables estimated for each 

of the series are the characteristic exponentα , mean excess returns µ, scale ratio c , and 

AR coefficientφ  that are shown respectively in columns 2  to 5 ,and finally the log 

likelihood estimates from the model are shown in column 6 . 

4. The LR test statistics ( ( )0== ηφ cLR ) for testing the null of “no predictable component” 

in Gaussian settings for all the series are shown in the column 7 of this Table. 

5. The LR test statistics for this test are calculated from log likelihood estimates from model 

3 and its restricted version at Gaussian settings (model 4) that restricts predictable 

component (φ ) in it.  

6. Under this null, the distribution of the LR test statistic is non-standard, therefore, the  p-

values generated by estimating Gaussian versions of Models 1 and 2 with data simulated 

from the estimated Gaussian Model 2 are reported in parentheses. 
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Table 4:      Model 4 Estimates: Gaussian Models without Predictable Components 

  

Portfolio 

 
µ  

 

c  

Log  

Likelihood  

 

Value-w 

10.79 

(2.41) 

38.21 

(1.20) 

 

-2725.93 

 

Cap-1 

22.15 

(4.31) 

68.40 

(2.15) 

 

- 3019.42 

 

Cap-2 

17.46 

(3.73) 

59.23 

(1.87) 

 

-2946.95 

 

Cap-3 

14.94 

(3.52) 

55.79 

(1.76) 

 

-2916.79 

 

Cap-4 

14.53 

(3.28) 

53.65 

(1.69) 

 

-2896.99 

 

Cap-5 

13.74 

(3.28) 

51.97 

(1.64) 

 

-2881.11 

 

Cap-6 

13.59 

(3.21) 

51.08 

(1.61) 

 

-2872.26 

 

Cap-7 

12.96 

(1.56) 

49.65 

(1.56) 

 

-2857.98 

 

Cap-8 

12.92 

(2.94) 

46.66 

(1.47) 

 

-2826.60 

 

Cap-9 

12.47 

(2.77) 

43.99 

(1.39) 

 

-2796.88 

 

Cap-10 

10.51 

(2.35) 

37.29 

(1.17) 

 

-2713.61 

Notes on Table 4 

1.  The following Gaussian model without predictable component is employed to estimate 

the results shown in this Table: 

ttr εµ += , tt cz2~ε , ( )1,0~ Niidz t     ( )4  

2. The model is estimated using value weighted market excess returns (Value-w), and ten 

size-based portfolio returns where the smallest size-based portfolio is denoted by Cap-1 

and the largest size-based portfolio is termed as Cap-10. The variables estimated for each 

of the series are mean excess returns µ, and scale ratio c , that are shown respectively in 

columns 2  and 3 ,and finally the log likelihood estimates from the model are shown in 

column 4 . 

3. All estimates are rounded off to the second decimal place. 

 

 

 

 

 


