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Abstract

This paper proposes an improved gamma random generator. In the past, a lot of gamma
random number generators have been proposed, and depending on a shape parameter (say,
alpha) they are roughly classified into two cases: (i) alpha lies on the interval (0,1) and (ii)
alpha is greater than 1, where alpha=1 can be included in either case. In addition, Cheng and
Feast (1980) extended the gamma random number generator in the case where alpha is
greater than 1/n, where n denotes an arbitrary positive number. Taking n as a decreasing
function of alpha, in this paper we propose a simple gamma random number generator with
shape parameter alpha greater than zero. The proposed algorithm is very simple and shows
quite good performance.
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1 Introduction

This paper proposes an improved gamma random generator. In the past, a lot of
gamma random number generators have been proposed. Generally, the gamma ran-
dom number generators are classified depending on the shape parameter, say
Johnk (1964), Berman (1971), Ahrens and Dieter (1974) and Best (1983) proposed
the random number generators in the case of@d< 1. The generator that Ahrens

and Dieter (1974) originally proposed using rejection sampling and Best (1983)
modified is included in the IMSL library (sdettp://www.vni.com/products/
imsl/index.html).

Fishman (1976, 1996), Cheng (1977), Best (1978), Tadikamalla (1978), Cheng
and Feast (1979), Schmeiser and Lal (1980), Ahrens and Dieter (1982), Minh
(1988) and Marsaglia and Tsang (2001) proposed gamma random number gener-
ators provided thatr > 1. Especially, Schmeiser and Lal (1980) used squeeze
method with mixture distribution, which is included in the IMSL library for> 1
but it is complicated in programming (i.e., a lot of lines or steps have to be re-
quired in programming). Marsaglia and Tsang (2001) proposed the simple and fast
algorithm of gamma random number generation which utilizes a standard normal
random number generator, but it is slower than the algorithm in Schmeiser and Lal
(1980). In Tadikamalla and Johnson (1981), various gamma random number gen-
erators are surveyed in the cases of both & < 1 anda > 1 (also, see Devroye
(1986, pp.401-428) for the gamma density). Thus, dependingtbe generators
are roughly classified into two casesxQr < 1 anda > 1 (@ = 1 might be included
in either of the two cases).

As mentioned above, Cheng and Feast (1979) proposed a gamma random num-
ber generator in the case @f> 1, where the ratio-of-uniforms method is utilized
for random number generation. Moreover, Cheng and Feast (1980) extended it to
the case of the shape parameter greater thiariat any positiven, and especially
they showed two algorithms in the casesnof 2,4. As an extension of Cheng
and Feast (1980), takingas a decreasing function of in this paper we propose a
simple and fast algorithm on gamma random number generation fer-al. The
ratio-of-uniforms method is utilized as a sampling method, where the acceptance
rate of the proposed generator is almost constant (i.e., about 0.76) for a wide range
of @ and it takes a minimum value (i.e., 0.5)at= 0. The proposed algorithm is
very simple and shows quite a good performance.

2 Gamma Random Number Generator witha > 0

The ratio-of-uniforms method, which is a random number generation method, is as
follows. Suppose that a bivariate random variakle, U.) is uniformly distributed
over the region determined by the inequality<QJ; < +h(U,/U;) for any non-
negative functiorh(x), which has to be a bounded region. Th&n: U,/U; has a
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density functionf(x) = h(x)/fh(x) dx. Typically, U; ~ U(0,a) andU, ~ U(b,c)
might be taken, whera = sup, vh(X), b = inf, xvh(x), andc = sup, x vVh(x). Note
thatU(-, -) denotes the uniform distribution between two arguments. In particular,
we haveb = 0 whenh(x) has positive support. It is easily verified that the accep-
tance probability is given bj h(x) dx/(2a(c — b)). See Kinderman and Monahan
(1977) for the ratio-of-uniforms method.

Consider the following density function of, denoted byf (-):

-1,X

f(x) = e, x>0,

1
F(a)xa
which is a gamma distribution with shape parametedenoted byG(a, 1). When
X ~ G(a,1) andW = X, we haveW ~ G(a,p), whereg is called the scale
parameter. Therefore, we focus on random number generationGfani). Note
thata = sup, Vh(X) < o holds whenr > 1, whereh(x) = x*le™* « f(x) in the
case 0fG(, 1).

When X is a gamma random variate with shape parametand X = Y" is
defined, we consider generating a random variaté.ofhe density function oY,
denoted byfy(-), is given by:

fy(x) = %xm‘l expx"), x> 0.
Applying the ratio-of-uniforms method, the acceptance region is determined by the
following inequality:

UZ < (Up/Up)™  exp(Uz/U)", 1)

where 0< U; < aandb < U, < ¢c. We obtaina = ((@ — 1/n)/€)"¥"/2 when
@ > 1/nanda = 1 whene = 1/n, b = 0, andc = ((a@ + 1/n)/€)@*¥"/2_ Note
that U, U,) satisfying (1) is a bounded set where 1/n, i.e.,a, b andc exist for
a > 1/n, and accordingly the ratio-of-uniforms method can be applied in this case.
See Cheng and Feast (1980). Define= aV; andU, = cV,, whereV; ~ U(0,1)
andV, ~ U(0,1). When the acceptance region is determined by the following
inequality:
(2
aVv;
thenX = (cV,/aVy)" is taken as a gamma random variate with shape parameter
a>1/n.
Taking into accounh(x) = x"™lexp(x") in this case, the acceptance rate
AP(a) is given by:

)n < —n(a + 1/n)logaV; + n(a@ — 1/n)logcV,, (2)

[he)dx T (a)

AP(a) = =
@) 2a(c—b)  2n(a + 1/n)@+l/n/2(q — 1/n)e-1/m/2’
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Figure 1: The acceptance ra&®(a) givenn
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Figure 2: The relationship betwearanda which maximizesAP(«a)
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Table 1: Comparison betweah andn*

ol 12 n nt AP(a) AP (a) | n*-n* ézklgc*yza)

.0 31.6228 1000.000 1000.000.5033 0.5033 0.0000 0.0000
10.000 3.16228 10.00000 10.00000.6175 0.6175 0.0000  0.0000
5.000 2.23607 5.00045 5.0000®.6735 0.6735 0.0005 0.0000
3.333 1.82574 3.34169 3.33333.7063 0.7060 0.0084  0.0003
2.500 1.58114 2.53181 2.5000®.7255 0.7236| 0.0318 0.0019
2.000 1.41421 2.06534 2.0555@.7368 0.7367| 0.0098 0.0001
. 1.00000 1.19969 1.16660.7544 0.7534/ 0.0330  0.0010
0.500 0.70711 0.77170 0.72222.7589 0.7545 0.0495  0.0044
0.333 0.57735 0.61145 0.57407.7596 0.7560 0.0374  0.0036
0.250 0.50000 0.52181 0.5000®.7599 0.7583 0.0218 0.0016
0.200 0.44721 0.46268 0.447210.7600 0.7590 0.0155 0.0010
0.125 0.35355 0.36109 0.35359.7601 0.7597| 0.0075  0.0004
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which depends on boita andn.

In Figure 1,AP(«) is plotted against, where the cases af = 1/3, 0.41, 0.5,
0.6,---, 100 are drawn. In the casesmof 2, AP(a) seems to be maximized when
a is close to In. We consider taking the envelope, which is drawn by the thickest
solid line in Figure 1 and obtained as follows:

max AP(a).
n

Note that givenr the acceptance rafeP(«) is numerically maximized with respect
ton. Letn* be the optimal value af. n* is given by a function o#, i.e.,n* = n*(a).
Thus, we have the optimalcorresponding to. In Figure 2,n*(@) is displayed by
the thick solid line. To examine the relationship betweendn, we draw the three
curves, i.e.n = a7t n = e Y2 andn = n*(e), in Figure 2. The reasons why the
three curves are compared are as follows> 1/n has to be satisfied in order to
perform the ratio-of-uniforms, i.eq~! indicates a lower bound af. Accordingly,
the boundary linen = ot is in Figure 2. Furthermore, it is shown that= o~ %/2
for largea, which is verified as follows. Dierentiating logAP(«) with respect to
n, we obtain the following equation:

2n = log(a + %) — log(a - %). 3)

Suppose thate — oo ase — 0. Then, using lim,_. log((1+ (na)"H)™) = 1,
na — 1 is obtained from (3), which implies that= o~/ is an optimal solution
for largea (note thain = o~/? satisfies the conditioma — co asa — o).
Therefore,n = o1, n* andn = o Y2 are compared in Figure 2. Thus, it is
shown from Figure 2 that* is close toe* for smalle and it is close tar*2 for
large. n* has to be larger than or equal to e line, because of — 1/n > 0. n*
can be numerically obtained, but it is time-consuming to compugvery time we
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generate gamma random draws for fixedTherefore, we consider approximating
n* = n*(a). Letn* be an approximation af*. As shown in Figure 2, it seems that
n* is close toa! for 0 < @ < 0.4 anda™2 for @ > 4. As for 04 < o < 4.0,
we taken* = a7 ! + a}(a - 0.4)/3.6, where the relationship between and «
represents a line passing through two poimts ¢) = (0.47%,0.4), (2°%,4). Thus,
nis represented as a continuous functiomrdbr anya > 0, where the condition
a > 1/nis satisfied.

Table 1 shows how close it is betwearandn*. AP*(a) andAP* (@) are denoted
by AP(e) evaluated at = n* andn = n*, respectively. In the tabl&P*(«) is almost
equal toAP*(a). More precisely, the maximum value of — n* is given by 0.0502
ata = 1.78, while that ofAP*(@) — AP*(a) is 0.00448 atr = 2.23. Thusn* gives
us a good approximation of .

Practically, it might be safe to take the logarithms in order to avoid the com-
putational problem in which we have an overflow W, (V)" especially when/,
is close to zeroY; is close to one and is large. Summarizing, the algorithm for
generating gamma random variates when the shape parameter is greater than zero
is shown as follows.

(i) Givena, setn, by, by, ¢; andc; as follows:

al if 0.0<a <04,
n= {al +a Y a - 0.4)/3.6, if 0.4<a<4.0, 4)
a 12, if 40<a,
b]_:CZ—l/n, b2:a+1/n,
. _{O, if 0.0<a<04,
17 \by(logh, —1)/2, if 0.4<a,

C = b2(|Og b2 - 1)/2

(i) Generates; andv, independently fronUJ(0,1). Setw; = ¢; + logvy, w, =
C, + log vy, andy = n(byw, — bowy).

(i) Goto (i) ify<O.

(iv) Setx = n(w,—w;), and takee* as a gamma random draw with shape parameter
a iflogy > xand go to (ii) otherwise.

The acceptance regions determined by (2) and (4), which is hereafter cali¢d)(2)

in this paper, are displayed in Figure 3, where the vertical axis indidatead the
horizontal axis represents. The inside of the closed curve corresponds to the area
shown by (2¥(4). Asa goes to zero, (2)(4) approaches the right and isosceles
triangle, i.e., the acceptance rate goes to 0.5+(@)is close to each other for all

a > 1, which is also shown from the envelope in Figure 1 & (@) in Table 1.
Thus, we can see that (A¥) has a broad stable acceptance probability within the
domain ofa.



Figure 3: The acceptance regions determined by (2) and (4)
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The gamma random number generator shown in (i) — (iv) is really simple and it
does not have any restriction on a range of the shape parameter. Therefore, it might
be very easy and useful in programming.

Cheng and Feast (1979) considered the acceptance region given by (2) in the
case ofn = 1 and they approximated the acceptance region, taking into account
computational aspects. Their approximation shows a good performanceaviien
large, but it is quite poor whea is close to one (for example, see Table 3.7 in
Fishman (1996, p.196)). Because thB(«) evaluated ah = 1 is small whenr
is large (see the case of= 1 in Figure 1), Cheng and Feast (1979) suggest that
(V1, V) is generated as:

{v1 ~U(0,1), V,~U(@,1), forl<a < 2.5, -

Vi ~ U(O, 1), Vo=V + (1 - Uo(l + \/Fe))/ \/&, for25< a,

whereUg ~ U(0, 1). Usingn = 1, (2) and (5), the acceptance rétig(«) is given by:
AP(a) — e/4 = 0.6796 asx — 1 andAP(a) — Vr/2/(1+ V2/€) = 0.6746 as
a — oo, See Ripley (1987, p.89) and Fishman (1996, p.198). In this paper, under
(2) and (4) we havé\P(a) — 0.5 ase — 0 andAP(a) — (in/€)2 = 0.7602
asa — oo, where we utilize the followingsI'(a + 1)/a = I'(@) andna = 1 for
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Table 2: CPU time (hundreds of seconds)

(a) wo Parameter Setup (b) w/ Parameter Setup
a |(2)+(4) B83 CF79 C77 SL80 MTOMTO1|(2)+(4) B83 CF79 C77 SL80 MTOMTO1
0.01 633 263 — — — 590 482695 394 — — — 614 527
01| 547 282 — — — 576 47.2 610 408 — — — 606 522
02| 508 310 — — — 574 47.0 570 439 — — — 603 517
03| 488 418 — — — 66.6 56.2 550 554 — — — 683 594
04| 478 434 — — — 66,6 56.2 540 530 — — — 682 594
06| 469 435 — — — 66,6 56.2 591 531 — — — 681 593
08| 466 391 — — — 66.6 56.2 587 487 — — — 680 592
099 465 259 — — — 66.6 56.2 586 398 — — — 679 59.2
1.01 465 — 49.4 485 27.0 41.3 30/858.6 — 63.7 58.2 60.4 43.3 334
14| 464 — 46.0 43.6 26.6 40.6 30/358.6 — 59.7 53.3 59.7 42.6 32.9
18| 464 — 47.2 415 27.7 40.2 300585 — 61.1 51.2 58.1 423 32.7
22| 46.1 — 49.2 403 275 40.0 29/858.3 — 63.4 50.0 82.0 421 325
26| 46.0 — 57.8 39.6 26.8 39.9 29/860.7 — 738 49.3 84.4 419 324
3 459 — b56.9 39.0 26,5 39.8 29/758.0 — 727 48.8 81.0 419 324
4 457 — 556 38.2 26.1 39.7 29/6579 — 712 479 83.9 41.7 323
5 457 — 549 37.8 259 39.6 29/557.6 — 70.3 47.5 83.8 41.7 32.2
10 456 — 53.8 37.0 25.8 39.5 29/457.5 — 68.9 46.7 80.4 415 32.1
20 457 — 534 37.0 25.8 394 29/4576 — 685 46.6 83.4 415 32.0
50 451 — 528 37.6 26.1 394 29.356.8 — 67.7 47.2 83.7 414 320
100 449 — 52.8 38.2 26.2 394 29/456.6 — 67.2 47.7 89.1 414 32.0
400 447 — 53.0 38.8 26.4 39.7 29/656.1 — 67.8 48.3 97.6 416 32.2

Compiled by: wf1386 /Ox [Fortran file].

smalla, andI'(¢) ~ e%a* Y22z andn = o~Y/2 for largea. Thus, for alla, the

AP(a) in the case of (4) is larger than thd(a) in the case ofi = 1 and (5). The
generator proposed in this paper is better than the Cheng and Feast (1979) generator
with respect to the acceptance rate.

3 Simulation Studies

In Table 2, 18° gamma random draws are generated and computational time (hun-
dreds of seconds) is compared for seven generators. Dual Xeon 3.6GHz CPU
(Socket 604, FSB 800MHz, L2 2MB) Personal Computer, Microsoft Windows XP
Professional Version SP2 Operating System, and Open Watcof8FTZompiler
(Version 1.5, downloaded fromttp://www.openwatcom.com) are utilized. In

the table, (2}(4), B83, CF79, C77, SL80, MTO1 arMTO1 represent as follows:

e (2)+(4): The generator proposed in this paper, where the acceptance region is
constructed by (2) and (4).

e B83: The Best (1983) generator.

e CF79: The Cheng and Feast (1979) generator, where the acceptance region is
given by the case af = 1 in (2) and (5).

e C77: The Cheng (1977) generator.
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e SL80: The Schmeiser and Lal (1980) generator.

e MTO1: The Marsaglia and Tsang (2001) generator using the Box-Muller trans-
formation for standard normal random number generation. From the fact that
XUV ~ G(a, 1) whenX ~ G(a + 1,1) andU ~ U(0,1) (for example, see
Devroye (1986, p.420)), Marsaglia and Tsang (2001) is extended to the case
ofa > 0.

e MTO1: Thisis equivalentto MTO1 except for use of the standard normal random
number generation method suggested liyriiann and Derflinger (1990).

In the table, (a) indicates CPU times in the case where parameters are initially setup
and 10° random draws are generated, while (b) represents CPU times in the case
where parameters are setup every time one random draw is generated. Taking an
example of the algorithm (i) — (iv) in Section 2, when'4@andom draws are gen-
erated, the former repeats (ii) — (iv) Gimes and the latter repeats (i) — (iv)20
times. Sometimes the latter is more practical than the former in programming. Be-
cause SL80 requires a lot of parameters to be set up, it might be expected that (a)
performs much better than (b). The uniform random number generator utilized in
this paper is given by L'Ecuyer (1988, Figure 3 on p.747), where for 32-bit comput-
ers the period of the uniform random number generator is of the orde3 bt 20'8.

As shown in Figure 1 and Table 1, (%) becomes stable very quickly for a
wide range ofx although it takes a larger value for small As for B83, we have
a large rejection rate around the middle between zero and one, and accordingly
the cases ofr = 0.3,0.4,0.6 take larger values for both (a) and (b). For (a), C77
takes a long time wheu is close to one, compared with large MTO1 andMTO1
take similar values for alt > 1, i.e., the marginal generation times for MTO1 and
MTO1 are about 40 and 30 for all > 1, respectively, but the cases okOa < 1
are much larger than those @f> 1, because the extra computation in the case of
0 < a < 1 takes a quite long time. MTOL is better than C77 wheis close to
one. MTO1 is much better than MTO1. In Table 2(a) C77 and MTO1 are not too
different from (2} (4) asa is large. However, SL80 anfdTO1 are much better than
(2)+(4) for a > 1, although they are complicated in programming (note that SL80
needs almost five times longer steps thar-(2) and that the Ermann-Derflinger
standard normal random number generatdvlif01 is more than ten times longer
than the Box-Muller generator in MTO1). Moreover, as it is expected;(@)is
superior to CF79 for altv > 1. Note that CF79 has discontinuity @at= 2.5 in
computational time because of (5). As for (a), simple and fast generators are C77
and MTOL1, but not too diierent from the proposed generator«@).

In the case where both parameter initialization and random number generation
are included in programming at the same time, i.e., in the case of Table 2(b), SL80
performs much worse than the others. For both MTO1MA@1 in Table 2, there
is not too much dference between (a) and (b), which implies that it does not take
too much extra time to initialize parameters.




4 Summary

In this paper, we have proposed the simple gamma random number generator shown
in the algorithm (i) — (iv), which has no restriction on the shape parameter. Schmeiser
and Lal (1980) proposed a fast generator in the case »f1, which is modified

by Sarkar (1996). Law and Kelton (2000, p.464) mentioned that the generator pro-
posed by Schmeiser and Lal (1980) is roughly twice as fast as the one presented by
Cheng (1977), but the algorithm of Schmeiser and Lal (1980) is much more com-
plicated and requires additional time to set up the necessary constants for a given
value ofa > 1 (also, see Tadikamalla and Johnson, 1981). In the case af @ 1,

the algorithm of Best (1983) is known as the best gamma random number generator.
Thus, diferent algorithms are conventionally used foxkQ» < 1 anda > 1, i.e.,

there are not any gamma random number generators which utilize the same algo-
rithm without depending on the value of Cheng and Feast (1980) discussed the
cases ofr > 1/n. Based on Cheng and Feast (1980), we have proposed the gamma
random number generator far > 0 by takingn as a decreasing function of,

and the proposed generator is really simple and practically useful in programming
although it is not the best generator in a sense of speed.
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