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Nonstationarity characteristics of the S&P500 returns:

An approach based on the evolutionary spectral density

Ibrahim Ahamada

GREQAM∗, Université de la Méditerranée and

CERESUR†, Université de la Réunion

Abstract

In this paper we study the instability characteristics of the covariance structure of the S&P 500

returns. The method used in this paper is based in the decomposition of the time spectral density

of the data. We show that the S&P 500 returns has the same characteristics as the modulate white

noise process, more precisely the unconditional volatility of the data is time varying. Consequently,

some precautions must be taken before applying traditional stationary models to describe like long size

financial time series.
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1 Introduction

The hypothesis of the covariance stationarity is often required in many traditional models concerned with

the description of financial returns data. For example, the traditional families of the ARCH models require

the stationarity of the unconditional volatility, the well known concept of long memory process suppose

the covariance stationarity of the studied process. But the stationarity of the second moment is a strong

hypothesis. Loretan and Phillips(1994) investigated methods of testing the null of the unconditional variance

constancy. They concluded the rejection of the null for many financial data. Starica and Micosh(2002)

noted that some classical stylized facts in financial series can be explained by a variance shift in the data.

These authors considered the S&P500 returns. In this paper we bring out some characteristics of the non

stationarity of the S&P500 returns by analyzing the behavior of the time spectral density of the data. Like

approach is recently used by Ahamada and Boutahar(2002) to define a test for covariance stationarity. More

precisely we use the theory of the evolutionary spectral density of Priestley to identify a non stationary

model of the S&P500 returns. This paper is organized as follows: In the first section we present the theory

of the evolutionary spectral density of Priestley. In the second section we present the non stationarity test

as proposed by Priestley(1969). Finally we apply the test to the S&P 500 returns before giving conclusion

and remarks.
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2 Theory of evolutionary spectral density.

2.1 Definition

The theory of the evolutionary spectrum of Priestley (1965) is concerned with oscillatory processes, i.e.

processes {Xt} defined as follows:

Xt =

πZ
−π

At(ω)e
iωtdZ(ω), (1)

where, for each ω, the sequence {At(ω)}, as function of t, has a generalized Fourier transform whose modulus
has an absolute maximum at the origin. {Z(ω)} is an orthogonal process on [−π, π] with E[dZ(ω)] = 0,1

E[|dZ(ω)|2] = dµ(ω), where µ(ω) is a measure. Without loss of generality, the evolutionary spectral density

of the process {Xt} is given by ht(ω) and defined as follows:

ht(ω) =
dHt(ω)

dω
, −π ≤ ω ≤ π, (2)

where dHt(ω) = |At(ω)|2 dµ(ω). The Priestley’s evolutionary spectrum theory is particularly attractive

concept since it has a physical interpretation. It encompasses most other approaches as special cases and

includes many types of nonstationary processes. The instantaneous variance of {Xt} is given by

σ2t = var(Xt) =

πZ
−π

ht(ω)dω. (3)

These relations show that any modification of the covariance structure of the studied series may be captured

by studying the stability of the evolutionary spectral density ht(ω). In particular, the relation (3) shows

that a modification of the variance of the process necessarily entails a time variation of ht(ω).

2.2 Estimation of the evolutionary spectral density

An estimator of ht(ω) at time t and frequency ω can be obtained using two windows {gu} and {wv}. Without
loss of generality, the estimator bht(ω) is constructed as follows:

bht(ω) =X
v∈Z

wv |Ut−v(ω)|2 , (4)

where Ut(ω) =
P

u∈Z guXt−ue−iω(t−u). We choose the following windows {gu} and {wv}:

gu =


1/(2
√
hπ),

0,

if

if

|u| ≤ h,

|u| > h,

and wv =


1/T 0,

0,

if

if

|v| ≤ T
0
/2,

|v| > T
0
/2.

(5)

where h and T 0 are windows parameters. From Priestley (1988), E(bht(ω)) ' ht(ω), var(bht(ω)) decreases
when T

0
increases and ∀ (t1, t2), ∀ (ω1, ω2), cov[bht1(ω1) bht2(ω2)] ≈ 0 if at least one of the following conditions

(i) or (ii) is satisfied:2

(i) |t1 − t2| ≥ T 0, (ii) |ω1 ± ω2)| ≥ π

h
. (6)

1This condition implies that E (Xt) = 0.
2For more details about the relations (i) and (ii) and the choice of h and T 0, the readers are referred to Priestley (1969, 1981).
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3 Presentation of the nonstationarity test

3.1 Principle of the test

The test of non stationarity of Priestley and Rao can be used also as a test of model selection. When the

stationarity hypothesis is rejected the test identify the non stationary model which describes the data. This

test is based on the decomposition of the time spectral density ht(ω) of the studied process (say {Xt}) as
a sum of a time component(αt), a frequency component(βω) and a time-frequency component(γtω):

log(ht(ω)) = µ+ αt + βω + γtω (7)

Many cases can be noted:

Case.1: Because the spectral density of a stationary process is time independent then the process {Xt} is
stationary if αt = γtω = 0.

Case.2: If only γtω = 0 then the process {Xt} is a modulate stationary process ,i.e. Xt = f(t)εt where

f(t) is a deterministic function and εt is a stationary process(the spectral density of εt is only frequency

dependent).

Case.3: If βω = γtω = 0 then the spectral density ht(ω) is only time dependent, then the process {Xt} is a
sequence of independent random process with time dependent covariance structure,i.e., the process Xt has

precisely the form of modulate white noise process Xt = f 0(t)ε0t where f 0(t) is a deterministic function but

ε0t is an i.i.d. process(spectral density of ε0t is a constant).

Case.4: If αt = βω = γtω = 0 then the spectral density is a constant and the process {Xt} is a white noise
since the spectral density of a white noise is a constant.

3.2 Description of the test

Let {Xt}Tt=1 be data from a discrete process {Xt} with theoretical evolutionary spectral density ht(ω)

and its estimate bht(ω) (4) . Let consider a set of times {ti}Ii=1 and a set of frequencies {ωj}Jj=1. Let
Yij = ln

³bhti(ωj)´, and hij = ln (hti(ωj)). From Priestley (1969), we have

Yij ≈ hij + eij , (8)

where the sequence {eij} is approximately uncorrelated and identically normal distributed. If the windows(5)
are used to estimate ht(ω) then from Priestley(1969, 1981), we have the follows approximate value of the

variance:

σ2 = var(eij) ≈ 4h

3T 0
(9)

Let decompose the time spectral density hij as follows: hij = µ + αi + βj + γij where αi, βj and γij

indicate respectively the time component, the frequency component and the time-frequency component of

the evolutionary spectral density. Then the relation (8) becomes:

Yij ≈ µ+ αi + βj + γij + eij (10)

The relation(10) is a standard two factors analysis of variance model. Because var(eij) is known, we can

apply the classical χ2-tests for testing the presence of temporal effects (αi), frequency effects(βj) or time-

frequency effects(γij). The results of these tests are summarized in a classical table of variance analysis as

follows:
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Table.1: Table of two factors analysis of variance for Priestley’s test.

Effect ⇓ \Statistics⇒ Statistics

Degree of freedom of the

χ2-tests under the null

of absence of effects

Temporal effects: αi ST =
J
σ2

IP
i=1

(Yi. − Y..)
2 (I − 1)

Frequency effects: βj SF =
I
σ2

JP
j=1
(Yj. − Y..)

2 (J − 1)

Interaction effects: γij STF =
1
σ2

IP
i=1

JP
j=1
(Yij − Yi. − Y.j + Y..)

2 (I − 1)(J − 1)

Total STF =
IP
i=1

JP
j=1
(Yij − Y..)

2 IJ − 1

where Yi. = 1
I

JP
j=1

Yij , Y.j = 1
J

IP
i=1

Yij et Y.. = 1
IJ

IP
i=1

JP
j=1

Yij . Under the null of the absence of the temporal

effects, ST is distributed as χ2 with (I−1) degree of freedom. Under the null of the absence of the frequency
effects, SF is distributed as χ2 with (J − 1) degree of freedom. And under the null of the absence of the
time-frequency effects, STF is distributed as χ2 with (J − 1)(I − 1) degree of freedom.

4 Application to the S&P 500 returns

We apply the previous test for the description of the daily returns of the S&P 500 denoting by Xt from

08/17/1993 to 07/18/2001 (size T = 2000). Before the application of the tests we need to fixe some

parameters and to chose the set of time and the set of frequencies. For the windows parameters of the

relation (5), we fixe h = 7 and T 0 = 100 then from(9) we have σ2 = var(eij) ≈ 28
300 . The sets of time and

frequencies are chosen as follows:

{ti = 100i}I=20i=1 and3 {ωj = π/20(1 + 3(j − 1))}J=7j=1 (11)

The following table.2 summarizes the results of the tests for the S&P 500 returns.

Table.2: Table of two factors analysis of variance for Priestley’s test.

Effect ⇓ \Statistics⇒ Statistics

Degree of freedom of the

χ2-tests under the null

of absence of effects

Temporal effects: αi ST = 156, 19994
19

(critical value for α = 0.05 : 30, 1)

Frequency effects: βj SF = 4, 8218701
6

(critical value for α = 0.05 : 12, 6)

Interaction effects: γij STF = 23, 555906
114

(critical value for α = 0.05 : 140)

The table.2 indicates without ambiguousness that we can reject the null of the absence of the temporal

effects, more precisely that indicates the presence of temporal effects in the time spectral density of the S&P
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500 returns. On the other hand, the table.2 indicates that we cannot reject the null of the absence of the

frequency effects and the absence of the time-frequency effects, then there are no frequency effects and no

time-frequency effects in the time spectral density of the S&P 500 returns. These results shows that the S&P

500 returns must be modelized as the case.3 (section.3.1),i.e., Xt = f 0(t)ε0t where f 0(t) is a deterministic

function and ε0t is an i.i.d. process. The function f 0(t) may be a constant function over successive intervals.

That implies that the unconditional volatility of Xt is given by the time varying deterministic function

var(Xt) = σ2f 02(t) where σ2 = var(ε0t). Because the unconditional volatility is not constant, the classical

models of description of financial returns data cannot be applied to Xt. Preliminary estimation of f 0(t) is

necessary before applying the traditional stationary model (as ARCH families model) to bε0t = Xtbf 0(t) . There are
a lot of methods to estimate f 0(t) as methods based on application of filter (Hordrick Prescott) or the break

point detection method based in algorithm of cumulative sums(Inclan and Tiao, 1994) if f 0(t) is constant

over successive intervals. So, if the filtered stationary series bε0t is described by a stationary GARCH model
then Xt is described by a GARCH model with time varying parameters(parameters are multiplied by bf 0(t)).
The GARCH model with time varying parameters is used by Starica and Micosh(1999) to describe the

S&P500 returns. So, our results confirm the Starica and Micosh approach(1999). The estimation of the time

spectral density, in figure.2, indicates some evident shift from t = 1000 (07/31/1997). The amplitudes of

spectral pick changed considerably from this date. That confirms the instability of the covariance structure

of the studied data. The figure.2 seems to indicate also that the spectral density is approximately constant

in the interval t = 1, ..., 1000(07/31/1997), so the data are covariance stationary in this interval while in the

interval t = 1001, ..., 2000 the unconditional volatility of the process has significantly modified.

5 Conclusion

In this paper we examined the covariance structure of the S&P 500 returns by using a decomposition of the

time spectral density of the data. The methods revealed that the S&P 500 returns denoted by Xt can be

specified as a modulate white noise process, i.e., Xt = f 0(t)ε0t where f 0(t) is a deterministic function and

ε0t is an i.i.d. process. The function f 0(t) my be constant over successive intervals. Then the unconditional

variance is time varying,i.e., var(Xt) = (f
0(t))2σ2 where var(ε0t) = σ2. So, the time varying variance must

be previously estimated and extracted from the data before using traditional stationary methods(families of

ARCH model, long memory process etc..) to bε0t = Xtbf 0(t) . Our results confirm the already results obtained by

Loretan an Phillips(1994), Starica and Micosh(1999).
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Figure 1. S&P 500 Return Series

Figure 2. Estimation of the Time Spectral Density of the S&P 500 Returns. Legend. x-axis:

Time(1,..,2000); y-axis: Frequencies(0; 0.5); z-axis: Time Spectral Density
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