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Abstract

A class of structural time series models with an asymmetric cyclical component is presented
and used in order to test for asymmetry in economic time series. The asymmetric cycle is
defined as a sine−cosine wave where the frequency of the cycle depends on past observations
of the stochastic process being modelled. Due to the conditional Gaussianity of the model,
Kalman filtering techniques can be used in the estimation of the parameters, and a standard
test for equality of cyclical frequency can be used as a symmetry test. Applying the test to US
economic time series reveals strong cyclical asymmetries in unemployment and industrial
production, and no significant deviation from symmetry in GDP. The test is also applied to
industrial production data in EU countries, with mixed results.
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1 Introduction

Although the discussion on whether business cycle variables are symmetric or, on the

contrary, present some type of asymmetry can be traced back to Mitchell (1927) and

Keynes (1936), it was the in
uential article of Neftci (1984) that placed the subject in

a purely quantitative setting. Using �nite Markov chain methods, Neftci (1984) found

evidence of asymmetric behaviour in unemployment rate data for the US in the sense that

increases in unemployment are steeper and shorter-lived than decreases. Further evidence
on this type of asymmetry, named steepness by Sichel (1993), is given by DeLong and

Summers (1986) on unemployment rates, Hamilton (1989), which presents evidence of

asymmetries in US GNP growth rates and Sichel (1993), which introduces a new type of

asymmetry, deepness, that de�nes the fact that business cycle troughs are lower than peaks

are high. Neftci's methodology was applied to US GNP, investment and productivity by

Falk (1986), rendering less convincing results on the asymmetry hypothesis.

This paper presents a simple and 
exible method to model and test for cyclical asymmetry,

based on the decomposition of a stochastic process into unobserved components. The

potential asymmetry is modelled by allowing the frequency of the cyclical component

of the series to shift depending upon past realizations of the observed process. The
conditional Gaussianity of the model allows for the use of Kalman �ltering in order to
estimate the parameters, and a simple test for asymmetry can be constructed using the

test statistic for testing the null hypothesis of equal cyclical frequency across regimes. The
method is used in order to test for asymmetry in US data (unemployment rate, industrial

production and GDP) and data corresponding to EU countries (industrial production).
While US unemployment and industrial production present strong evidence of cyclical
asymmetry, we cannot reject the null of symmetry for real GDP at any sensible signi�cance

level. The results for industrial production in the EU are mixed: signi�cant departures
from symmetry are found in France, Germany and UK, and to a lesser extent in Spain
and Sweden.

The paper is organized as follows. Section two presents the trend plus asymmetric cycle

model, section three comments on Kalman �ltering and estimation of the parameters

in the structural time series model with an asymmetric cycle. Section four tests for
asymmetry on US and EU data. Section �ve concludes.

2 The trend plus asymmetric cycle model

The trend plus asymmetric cycle model arises as a straightforward generalization of the

trend plus cycle model developed by Harvey (1989) by allowing the frequency of the

cyclical component to vary depending on past realizations of the process itself. Assume
that the process of interest (yt) can be decomposed in an additive fashion into a trend

component (�t), a cycle component ( t) and an irregular component (�t), where the trend

captures long-term movements of the series, the frequency of the cyclical component

depends on past realizations of yt and the irregular component, assumed to be white

noise, comprises the rest of the movements of the series which are not captured by either
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the trend or the cyclical component.1That is,

yt = �t +  t + �t; �t � NID(0; �2� ) (1)

The trend component is speci�ed in its most general form as follows,

�t = �t�1 + �t�1 + �t; �t � NID(0; �2�); (2)

�t = �t�1 + �t; �t � NID(0; �2� ); (3)

where �t and �t are disturbances uncorrelated mutually and with the irregular component,
�t. It can be easily noticed that such a speci�cation of the trend nests as special cases

the linear time trend model (if �2�=0 and �
2

�=0), the random walk with drift (if �2�=0 and

�
2

� >0) and the smooth trend model (if �2� >0 and �2�=0).

The asymmetric cyclical component  t is modelled as a stochastic sine-cosine wave with
a regime-dependent frequency,

 t = �
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where  �

t appears by construction, � 2 [0; 1) is a damping factor, �1 and �2 are the

frequencies of the cycle in the two possible regimes (�1 2 [0; �], �2 2 [0; �]), !t and !
�

t

are iid normally distributed disturbances, mutually uncorrelated and with equal, �xed
variance �2!, I(fy�g

t�1
�=1) is an indicator function taking value one if a given function of the

realized values, f(fy�g
t�1
�=1) is positive and zero otherwise, that is,

I(fy�g
t�1
�=1) =

(
1 if f(fy�g
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�=1) > 0;

0 if f(fy�g
t�1
�=1) � 0:

(6)

Stating equations (4) and (5) in matrix form,"
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where the A(fy�g
t�1
�=1) is given by"
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If �1 = �2 = �, the model boils down to the symmetric trend plus cycle model developed

by Harvey (1985, 1989), with the cycle component de�ned by"
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1A seasonal component can be introduced in a straightforward fashion. In order to keep the model
simple and due to the fact that the empirical applications will be performed on seasonally adjusted data,
no seasonal component is included in the exposition of the model.
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We may be interested in modelling cyclical asymmetries respective to whether our process

is in an expansive or recessive phase (in terms of positive or negative growth of yt). In

this case, the f function to use in the indicator is f(fy�g
t�1
�=1) = yt�1 � yt�2, so that the

indicator function takes value one if positive growth was observed in the last period, and

zero otherwise . The same way, we could be interested in modelling accumulation e�ects

in cyclical behaviour, specifying di�erent cyclical frequency for levels of yt exceeding some

known level �y. In this case, a sensible function to use would be f(fy�g
t�1
�=1) = yt�1 � �y.

While the derivations of the estimators and testing procedures will be done for a generic

f(�) function, in the empirical applications we will stick to certain types of asymmetries.

It can be easily proved that the cyclical component is a threshold autoregressive-moving

average - TARMA(2;2,1) - process [see, e.g. Tong (1983, 1990)], where the threshold

variable is f(fy�g
t�1
�=1). Notice from (7) that the cyclical component may be expressed as

h
I� �A(fy�g

t�1
�=1)L

i "
 t

 
�

t

#
;=

"
!t

!
�

t

#
;

where L is the lag operator, such that Lf
xt = xt�f . Just by computing the inverse ofh

I� �A(fy�g
t�1
�=1)L

i
, the resulting expression for  t is
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which is a TARMA(2;2,1) model with f(fy�g
t�1
�=1) as threshold variable, where both the

�rst autoregressive and the moving average parameter depend on whether the value of

f(fy�g
t�1
�=1) is positive or negative. If � 2 [0; 1), each one of the regimes is stationary,

which suÆces for the ergodicity of the TARMA process. However, this condition could

be relaxed depending on the properties of f(fy�g
t�1
�=1) and the trend component. Notice

that the roots of the autoregressive roots of each regime are constrained to be complex,

leading to regime-speci�c pseudo-cyclical behaviour. In the symmetric case, the cycle is

an ARMA(2,1) process where the autoregressive roots are constrained to be complex [see

Harvey (1985)].

Instead of specifying two di�erent unobserved dynamic processes for the series yt, as in
the case of the trend plus asymmetric cycle model, the cycle can be incorporated directly

to the trend. The resulting (asymmetric cyclical trend) model has the following dynamic

speci�cation,

yt = �t + �t (8)

�t = �t�1 +  t�1 + �t�1 + �t; (9)

with �t and the cyclical component de�ned as in (3) and (7), respectively.
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3 Kalman �ltering and estimation

Both the trend plus asymmetric cycle and the asymmetric cyclical trend model are con-

ditionally Gaussian, that is, given observations up to and including yt�1, yt is normally

distributed for all t > 0. This allows us to use Kalman �ltering in order to set algorithms

for the maximum likelihood (ML) estimation of the unknown parameters of the model.

The �rst step that needs to be taken is to formulate the model in state space form. The

measurement and transition equations are given by

yt = z
0
�t + �t; (10)

�t = T(fy�g
t�1
�=1)�t�1 + �t; (11)

where �t, the state vector, is (�t �t  t  
�

t )
0
; and �t= (�t �t !t !

�

t )
0. For the case of the

trend plus asymmetric cycle model, z=(1 0 1 0), and for the asymmetric cyclical trend

z=(1 0 0 0). On the other hand, T(fy�g
t�1
�=1) is given by

T(fy�g
t�1
�=1) =

0
BBBB@

1 1
0 1

... 0

� � � � � � � � �

0
... �A(fy�g

t�1
�=1)

1
CCCCA (12)

for the case of the trend plus asymmetric cycle model, and by the same matrix with a

third one in the �rst row for the asymmetric cyclical trend case. The parameter vector

of interest is � = (�2� �
2

� �
2

� �
2

! � �1 �2)
0, which can be estimated by maximizing the log-

likelihood function,

logL = �T=2(log2�)� 1=2
TX
t=1

logft � 1=2
TX
t=1

v
2

t =ft;

where T is the total number of available observations on yt, vt is the prediction error when
using the estimated value of yt, ŷt, and ft is de�ned as

ft = z
0
Ptjt�1z + �

2

� ;

where Ptjt�1 is the covariance matrix of the estimator of �t given information up to period
t� 1, that is,

Ptjt�1 = T(fy�g
t�1
�=1)Pt�1T(fy�g

t�1
�=1) + diag(�2� �

2

� �
2

! �
2

!);

which can be written as the following recursion

Ptjt�1 = T(fy�g
t�1
�=1)[Pt�1jt�2 � f

�1

t Pt�1jt�2z
0
zPt�1jt�2]T(fy�g

t�1
�=1) + diag(�2� �

2

� �
2

! �
2

!):

Reparametrizing the vector � of unknown parameters in such a way that each element of it

is expressed relative to the variance of the error process in the measurement equation, �2� ,

allows us to concentrate this parameter out of the log-likelihood and estimate the rest of
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the parameters in � by maximizing the concentrated log-likelihood. Di�erent algorithms

can be used for the estimation of the unknown parameters [see Harvey (1989), pp. 126�].

The asymptotic normality of the ML estimator of � allows the construction of simple
likelihood ratio, Wald or Lagrange multiplier tests for equality of the frequency parameters

�1 and �2. Under some regularity conditions, which include that the true parameter vector

is an interior point of the parameter space and that it is identi�able,2 the asymptotic

normality of the ML estimator of � is assured, and therefore a simple test for equal

frequency across cyclical regimes can be used.

4 Cyclical assymetries in US and EU data

This section presents some empirical applications of asymmetric cyclical models on eco-

nomic data. For the US, three variables with quarterly periodicity are analyzed: in-

dustrial production, unemployment rate, and real GDP.3 Sichel (1993) �nds steepness

and deepness asymmetry in unemployment, and only deepness asymmetry in industrial

production, while no asymmetry is found in aggregate production. In order to account
for di�erent cyclical behaviour in the contractive and expansive economic regime, we set
f(fy�g

t�1
�=1) = �yt�1, that is, we de�ne the two regimes according to whether positive

or negative growth was observed in the last quarter. After trying di�erent speci�cations
based on the most general model given by (1)-(6), the most accurate �t was given by

the model with a smooth trend (�2v = 0) plus a cycle for the three series of interest.

The irregular component was found to be insigni�cant for unemployment and industrial
production and was removed from the speci�cation. None of the speci�cations reported

presents signi�cant deviations from normality and lack of autocorrelation (up to eight
lags) in the residuals. The �rst column in Table 1 shows the estimated parameters of
the cyclical component for (logged) US industrial production, together with the value

of the Wald test for symmetry (�1 = �2) and its corresponding p-value. The null of
symmetry is strongly rejected, and the frequency of the cyclical regime corresponding to

expansions (�1) appears considerably lower than the frequency in recessions, giving evi-
dence of higher steepness during recessions. The period corresponding to expansions in
the cycle of industrial production is approximately 23.3 quarters, and in recessions it cor-

responds to approximately 9.6 quarters. These results contradict the evidence presented

in Sichel (1993) concerning the di�erence in steepness across recessions and expansions.
The second column in Table 1 shows the results of the asymmetric cyclical component

of the (logged) unemployment rate. Notice that �1 is in this case the cyclical frequency
corresponding to recessions (increases in unemployment). The results present strong evi-

dence of asymmetric behaviour of unemployment rates in the US, which has an estimated

period in the expansive regime of 26.2 quarters, and 13.7 quarters in the recessive regime.
However, for the case of GDP, presented in the third column of Table 1, no evidence of

2Strict positiveness of � and lack of correlation between the cyclical disturbances suÆce for identi�a-
bility of both the trend plus asymmetric cycle model and the asymmetric cyclical trend model.

3The source of the data is the International Financial Statistics Database, published by the IMF.
Quarterly data was used, ranging from 1957:1 to 2001:2 for industrial production, and from 1965:1 to
1999:1 for unemployment rate and GDP.
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cyclical asymmetry is found. The estimated cyclical frequency under symmetry is 0.23,

corresponding to a period of approximately 7 years.

Table 2 presents the point estimates for the cyclical frequencies of industrial production in
all EU countries except Luxembourg,4 together with the Wald test statistic for symmetry

and its p-value and the constraints that were used in the speci�cation of the structural

time series model for each series. The industrial production series in France, Germany

and UK present strong evidence of asymmetry, with steeper recessive cycles and 
atter

cyclical behaviour in expansions. Weaker evidence exists for Spain and Sweden, where

the Swedish case presents slightly steeper cycles in the expansion phase compared to

the recessive regime. Industrial production in the rest of the countries does not present

any signi�cant deviation from cyclical symmetry. The ratio of the estimated recession

frequency to the expansion frequency for those countries which present at least weak

evidence of asymmetry varies between around 0.1 for France and 1.1 for Sweden.

5 Conclusions and paths of further research

A simple and 
exible parametric framework for modelling and testing for cyclical asymme-

tries has been introduced by de�ning a structural time series model where the frequency of
the cyclical component is made dependent on past observations of the modelled stochas-
tic process. The simple setting allows for testing for asymmetric cyclical behaviour with

respect to di�erent reference functions which \trigger" the asymmetry (f(fy�g
t�1
�=1)). The

method has been applied to US data on unemployment, industrial production and GDP

and to data on industrial production for all EU countries with the exception of Luxem-
bourg. Strong evidence of cyclical asymmetry has been found in US unemployment, US
industrial production and industrial production in Germany, France and UK. Weaker ev-

idence of asymmetry has been found in the data for industrial production in Spain and
Sweden.
Given the fact that the reduced form of the model is a TARIMA(2,2,4) with f(fy�g

t�1
�=1) as

a threshold variable, a further step towards the generalization of models with asymmetric

cycles could be taken by applying the theory developed for optimal testing in models

where a nuisance parameter is only de�ned under the alternative hypothesis [see, e.g,
Andrews and Ploberger (1994), and Hansen, (1996)] in order to test for asymmetry in an

unobserved components setting without specifying f(fy�g
t�1
�=1) completely, but letting it

be determined endogenously from the data.
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Table 1: Asymmetric cycles in US data
IP Unemployment GDP

CoeÆcient Estimate S.E. Estimate S.E. Estimate S.E.

� 0.91 0.02 0.95 0.02 0.95 0.05
�1 0.27 0.05 0.46 0.03 0.23 0.05
�2 0.66 0.07 0.24 0.03 0.21 0.09
�
2

!
9.05 �10�5 1.35 �10�5 8�10�4 1.22�10�4 0.0001 5.43 �10�5

Test �1 = �2 33.14 (0.00) 180.36 (0.00) 0.02 (0.88)

The estimation of the trend plus asymmetric cycle for industrial production and unemployment was

carried out under the restrictions �
2

�
= �

2

�
= 0. For GDP, the model included only the restriction

�
2

�
= 0.

Table 2: Asymmetric cycles in EU industrial production data
�1 �2 Asymmetry test (p-value) Speci�cation

Austria 0.19 0.17 0.20 (0.66) �
2

�
= 0

Belgium 0.01 0.36 1.47 (0.23) �
2

�
= �

2

�
= 0

Denmark 0.09 0.08 2.40 (0.12) �
2

�
= 0

Finland 0.27 0.32 0.55 (0.46) �
2

�
= 0

France 0.05 0.51 43.99 (0.00) �
2

�
= 0

Germany 0.08 0.32 12.80 (0.00) �
2

�
= �

2

�
= 0

Greece 0.37 0.41 0.21 (0.65) �
2

�
= 0

Ireland 0.43 0.42 0.003 (0.96) �
2

�
= 0

Italy 0.18 0.18 0.003 (0.95) No constraints
Netherlands 0.28 0.28 0.003 (0.96) No constraints
Portugal 0.40 0.40 0.000 (0.99) �

2

�
= 0

Spain 0.37 0.45 2.77 (0.09) �
2

�
= 0

Sweden 0.26 0.24 3.98 (0.05) �
2

�
= 0

United Kingdom 0.09 0.44 26.69 (0.00) �
2

�
= �

2

�
= 0
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