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Abstract

This paper compares binary versions of two well−known preference aggregation methods
designed to overcome problems occurring from voting cycles, Copeland’s (1951) and
Dodgson’s (1876) method. In particular it will first be shown that the Copeland winner can
occur at any position in the Dodgson ranking. Second, it will be proved that for some list of
individual preferences over the set of alternatives, the Dodgson ranking and the Copeland
ranking will be exactly the opposite, i.e. maximally different.
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1 Introduction 
Simple majority rule does not always determine a Condorcet winner, i.e. the alternative that 
beats every other alternative by a simple majority, because of voting cycles. The purpose of 
this paper is to compare binary versions of Copeland’s (1951) and Dodgson’s (1876) 
preference aggregation methods1 designed to overcome problems occurring from voting 
cycles. In particular it will be shown that the Copeland winner can occur at any position in the 
Dodgson ranking. Moreover, it will be proved that for some list of individual preferences over 
the set of alternatives, the Dodgson ranking and the Copeland ranking will be exactly the 
opposite, i.e. maximally different. Hence we provide new insight into the relationship of these 
two methods. This is something that cannot be obtained from the usual axiomatic (Fishburn 
(1977)) or non-binary (Laffond et al. (1995)) comparisons of different aggregation methods.  

The first comparisons of this kind have essentially been undertaken by Ratliff (2001, 2002a,b) 
who has investigated the relationship between the non-binary Dodgson method and various 
other binary aggregation procedures. Saari (2000) has provided insight into different methods 
using a geometric approach. Our paper is also related to Baigent (1983), who discusses the 
idea of being furthest from majoritarian choice, i.e. furthest from being a Condorcet winner. 
Some of our results can be seen as a strengthening of those results. 

The structure of the paper is as follows. The next section presents the formal framework. 
Section 3 introduces the Dodgson ranking. In section 4 we introduce the Copeland ranking 
and provide the main comparisons to the Dodgson ranking. Section 5 concludes the paper. 

 

2 Formal Framework 

Let X  denote a finite set of n  alternatives and H  denote a finite set of h  individuals. A 
preference R X X⊆ ×  is a binary relation on X . For all ,j mA A X∈ , the weak preference of 

jA  over mA  will be denoted by j R mA A . The symmetric and asymmetric part of R  will be 
written as R∼  and R;  respectively. Whenever there is no danger of confusion, subscripts will 
be dropped. Let B  be the set of all complete binary relations on X , ⊂W B  the set of all 
weak orders (complete and transitive binary relations) on X  and ⊂L W  the set of all linear 
orders (complete, transitive and asymmetric binary relations) on X . The non-empty set 

AM ⊂ B  is the set of all R∈B  such that for all { } , RA X A A A′ ′∈ ;\ . Lists of individual 

(strict) preferences (also called profiles) will be written as 1 2( , ,..., )u u u h
hu L L L= ∈L  where 

u
iL ∈L  is individual i’s preference on X  in profile u.  

For all ,j mA A X∈ , the majority margin of jA  over mA  in profile hu∈L  is denoted by 

{ } { }, : :u u u
j m j i m m i ja i H A L A i H A L A= ∈ − ∈ .2 As the discussed methods are procedures to 

overcome the problems of simple majority rule (SMR) we define SMR as a function 
: hv →L B  such that for all hu∈L  and all ,j mA A X∈ , ( )j v u mA A  if and only if , 0u

j ma ≥ . 
That is, an alternative jA  is at least as good as alternative mA  if and only if there are not more 
individuals strictly preferring mA  over jA  than there are individuals strictly preferring jA  

                                                 
1 A binary version of Copeland’s method can be found in Saari (2000), one of Dodgson’s method in Klamler 
(2002a). 
2 Whenever there is no danger of confusion the superscript will be dropped. 
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over mA . The non-empty set ( ) h
jAΓ ⊂ L  denotes all profiles for which jA X∈  is the 

Condorcet winner, i.e. , 0j ma >  for all { }\m jA X A∈ . 

Furthermore, let ]  be the set of all integers, then, using SMR, we can assign to any profile 
hu∈L  a point in pairwise space ( )2

n

]  denoted by the vector ( )2
1,2 , 1,( ,..., ,..., )

n
u u u u

j m n nw a a a −= ∈]  

where { }, 1, 2,..., ,j m n j m∈ < .  

Finally, use will be made of concepts measuring the distance between binary relations and 
profiles, respectively. Let \  be the set of all real numbers. The Kemeny distance function on 
B  will be defined as :δ +× →B B \  such that for all ( ) ( )

2, , ( , ) R R R RR R R Rδ ′ ′− ∪ −′ ′∈ =B .3 

Distance on the set of profiles will be measured by distance function : h hd +× →L L \  such 

that for all '

1
, , ( , ) ( , )

h
h u u

i i
i

u u d u u L Lδ
=

′ ′∈ =∑L . 

 

3 The Dodgson Ranking 

Dodgson (1876) devised a non-binary procedure to overcome the problem of voting cycles. 
He suggested that one should always choose the alternative in X that is “closest” from being a 
Condorcet winner. His concept of distance was based on the number of inversions of pairs in 
the individual preferences. Hence, profile information is essential for applying Dodgson’s 
method. A natural binary extension of Dodgson’s non-binary method is to rank the 
alternatives with respect to the minimal number of inversions necessary to make the 
alternatives Condorcet winners.  

For a formal statement of the Dodgson ranking, let, for all hu∈L  and all hT ⊆ L , the 
Dodgson distance of an alternative be determined by the function :u X +∆ → \  such that for 
all A X∈ , 

( )
( ) min ( , )u

u A
A d u u

′∈Γ
′∆ = . 

Definition 3.1: For all hu∈L , the Dodgson ranking D∈W  is such that for all 
, ,j m j D mA A X A A∈  if and only if ( ) ( )u u

j mA A∆ ≤ ∆ . 

Intuitively the Dodgson ranking seems to be a very attractive solution to the problem of 
voting cycles. The method insures that alternatives are higher ranked in the Dodgson ranking 
whenever they are of smaller distance from being a Condorcet winner. Moreover there will 
always be an alternative that is considered furthest away from being a Condorcet winner.4 For 
obvious reasons such an alternative can be seen as a bad alternative. The question arises how 
other procedures devised to overcome Condorcet’s paradox compare to the Dodgson ranking. 
As those methods are extensions of SMR this could be seen as undesirable because it goes 
against the majoritarian legitimacy inherited from SMR. 

The rest of this section will introduce some prerequisites necessary to derive the later results. 
Saari (1995) has shown that for any vector ( )2

n

z∈]  such that all entries are either even or odd, 
there exists, for some h +∈] , a profile hu∈L  such that uw z= , i.e. any point in pairwise 
space can be obtained using SMR. This has been extended by Ratliff (2001, 2002b) in the 
sense that for any point in pairwise space there always exists a profile such that only switches 
                                                 
3 As we are exclusively concerned with linear orders, the division by 2 is for the convenience of being able to 
talk about distance values and numbers of pairwise switches interchangeably.  
4 For further discussion see also Baigent (1983). 
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in adjacent alternatives in the individual rankings are necessary to determine the Dodgson 
winner.5  

Lemma 3.2 (Ratliff (2002b)): Given any profile u, there exists a profile u’ with the same 
pairwise election margins as u where all of the pairwise outcomes can be reversed via 
adjacency switches in u’. 

 

4 The Copeland Ranking 
Fishburn (1977, p. 473) said about Copeland’s method that it “extends Condorcet’s Principle 
under the philosophy that an alternative with the greatest number of simple majority wins 
minus losses deserves to be in the choice set. If a simple majority win is a good thing for an 
alternative, then the more the better.” Hence, the Copeland ranking can be seen as an ordering 
of the alternatives according to the stated principle that the more majority wins the better. 
However, it can also be shown that this is equivalent to a ranking of the alternatives according 
to their distances from being Condorcet winners relative to the Kemeny metric (Klamler 
2002b). This is indeed close to the definition of the Dodgson ranking with the difference that 
the informational basis for determining the Copeland ranking is far more restricted. There is 
no information about individual preferences or pairwise margins needed to determine the 
Copeland ranking. 

For all R∈B , let the Copeland value of an alternative be determined by the function 
:Rc X +→ \  such that for all A X∈  and all AR M′∈ , ( ) min ( , )

A
R R M

c A R Rδ
′∈

′= . 

Definition 4.1: For all hu∈L , C∈W  is the Copeland ranking if and only if for all 
( ) ( ), , ( ) ( )C v u v uA A X A A c A c A′ ′ ′∈ ⇔ ≤ . 

The following three theorems show precisely how different Copeland’s and Dodgson’s 
methods can be. First, this is of particular interest because of the same distance idea 
underlying both of these methods. Second, it gives insight into the relation of the two methods 
in a way that cannot be provided by the usual axiomatic comparison of different aggregation 
procedures. 

Theorem 4.2: Let 4X ≥ . Then for some profile hu∈L , 2 H h< = < ∞ , there exists an 

alternative *A X∈  such that for all { }* *\ , CA X A A A∈ ;  and *
DA A; .  

(This is a corollary of both theorems 4.4 and 4.5) 

Example 4.3: Consider 4X = , 20H = , and the following profile 20u∈L  given in Table 1, 
where numbers determine how many voters have each ranking. 

 

Nr. Ranking Nr. Ranking 

4 1 3 2 4A A A A; ; ;  5 3 2 4 1A A A A; ; ;  

1 1 4 3 2A A A A; ; ;  8 4 1 2 3A A A A; ; ;  

2 2 3 4 1A A A A; ; ;    

Table 1 

                                                 
5 This is sufficient for the results in this paper. However, it might not go far enough for comparisons of the 
Dodgson ranking with other procedures. See Klamler (2002a). 
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From Table 1 we obtain, by using SMR, the pairwise tallies and margins which are presented 
in Table 2. As can be clearly seen, for the above profile there is no Condorcet winner. From 
Table 2 we calculate the Dodgson-distances, i.e. the distance (or necessary number of 
switches) of each alternative from becoming the Condorcet winner. E.g., to make 1A  the 
Condorcet winner it has to be moved above 4A  in at least 6 individual rankings. For 2A  we 
need 4 switches above 1A  and one switch above 3A . The Dodgson distance (number of 

 

 Tallies Margins  Tallies Margins 

1 2A A;  13,7 6 2 3A A;  10,10 0 

1 3A A;  13,7 6 2 4A A;  11,9 2 

1 4A A;  5,15 -10 3 4A A;  11,9 2 

Table 2 

pairwise switches) for every A X∈ , denoted by ( )u A∆ , is given in Table 3. To make 1A  the 
Condorcet winner measured in the Copeland sense, it has to be moved above 4A  in the simple 
majority relation, what means that one switch is necessary. For 2A  we need 1 switch above 

1A  and half a switch above 3A .  The Copeland value for every A X∈ , denoted by ( ) ( )v uc A  is 
also given in Table 3. 

 

1( )u A∆  6 ( ) 1( )v uc A  1 

2( )u A∆  5 ( ) 2( )v uc A  3
2

 

3( )u A∆  5 ( ) 3( )v uc A  3
2

 

4( )u A∆  4 ( ) 4( )v uc A  2 

Table 3 

Hence, the Dodgson ranking is 4 3 2 1D D DA A A A; ∼ ;  with 1A  being bottom in that ranking. 
The Copeland ranking is 1 2 3 4C C CA A A A; ∼ ; . This shows that for some preference profiles 
the two methods lead to maximally different results. 

Theorem 4.4: Let 4X ≥ . Then there exists a profile hu∈L , 2 H h< = < ∞ , such that for 
all ,A A X′∈ , C DA A A A′ ′⇔ . 

Proof. Let 1,na k= − . Let 1, ja m=  and ,j na l= , 2,3,..., 1j n= − . Let , 0p qa =  for 

{ }, 2,3,..., 1 ,p q n p q∈ − < . From lemma 3.2 there exists a profile hu∈L  such that ( )2
n

uw ∈]  
has exactly those margins. From the definition of the Copeland value, ( ) 1( ) 1v uc A = , 

3
( ) 2( ) 1 n

v uc A −′ = +  for all { }2 1,..., nA A A −′∈  and ( ) ( ) 2v u nc A n= − . Hence the Copeland ranking 
is 1 CA A′;  for all 1A A′ ≠  and C nA A′;  for all nA A′ ≠  and CA A′ ′′∼  for all 

{ }2 3 1, , ,..., nA A A A A −′ ′′∈ . From the definition of the Dodgson number and the assumed 

pairwise margins we get (for k,m,l even) 1 2( ) 1ku A∆ = + , 2( ) 1 ( 3)mu A n′∆ = + + −  for 
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1, nA A A′ ≠  and 2( ) ( 2)( 1)lu
nA n∆ = − + . For 1A  to be bottom in the Dodgson ranking, 

2 21 ( 2)( 1)k ln+ > − +  which leads to ( 2)( 2) 2k n l> − + −  and 2 21 2k m n+ > + −  which leads to 

2 6k m n> + − . For nA  to be top in the Dodgson ranking, 2 21 ( 3) ( 2)( 1)m ln n+ + − > − +  which 
leads to ( 2)( 2) 2 4m n l n> − + − +  which can be simplified to ( 2)m n l> − . From that and the 
two inequalities containing k as determined above, those reduce to one inequality containing 
k, namely ( 2)( 2)k n l> − + . To show that there exists a solution to this system of inequalities 
for all 4n ≥ , choose 2l = . This implies that 2 4m n> − . Hence, let 2 2m n= − . Then from 
the above inequality containing k, we get 4 8k n> −  which exists for all finite n < ∞ . � 

Theorem 4.5: Let 4X ≥ . The Copeland winner can occur at any position in the Dodgson 
ranking. 

Proof. Let , 2hu h∈ < < ∞L  be a profile such that ( ), ,..., ,0, ,..., , , ,...,uw l l l l l k l l= − , ,k l  both 
even, i.e. 1, 2,3, 0na k a= − =  and all other pairwise margins are equal to l. From lemma 3.2 we 
know that such a lemma exists. The Dodgson and Copeland values for the alternatives in such 
a profile can be found in Table 4. 

 

Alt. (.)u∆  ( ) (.)v uc  

1A  2 1k +  1 

2A  2 2l +  3
2

 

3A  2 2l +  3
2

 

4A  3
2 3l +  3 

#    

jA  ( 1)
2 ( 1)j l j− + −  1j −  

nA  ( 2)
2 ( 2)n l n− + − 2n −  

Table 4 

Obviously, 1( ) ( )j jA A+∆ ≥ ∆  for 2,3,..., 1j n= − . Hence for 1A  to be bottom in the Dodgson 

ranking, ( 2)
2 21 ( 2)k n l n−+ > + −  which leads to ( 2) 2 6 ( 2)( 2) 2k n l n n l> − + − = − + − . Also, as 

the Copeland ranking (and therefore the Copeland winner) is determined by the values of 
( )v uc , from table 1 we see that 1A  is the Copeland winner as it has the lowest Copeland value. 

From the definition of ( )v uc  it is clear that the Copeland ranking does not change as long as 
the signs in the vector of pairwise margins do not change. To change 1A ’s position in the 
Dodgson ranking, change the pairwise margins without changing the sign. Let 1,2a m l= > . 

For 2 1( ) ( )A A∆ > ∆  we need 2 21 2k m+ < +  which implies 2m k> − . For every alternative 

{ }, 3, 4,..., 1jA j n∈ −  let { }, , 1, 2,..., 1i ja m i j= ∈ −  with 2m k> −  and ( 2)( 2) 2k n l> − + − . 
Doing so will move one alternative after the other below 1A  in the Dodgson ranking. Finally, 
let { }, , 2,3,..., 1i na m i n= ∈ − , 2m k> − . This, in addition to the steps taken before implies that 
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1A  can also be the Dodgson winner and hence the Copeland winner can take any position in 
the Dodgson ranking. � 

 

5 Conclusion 
This paper has provided a comparison of two famous rules to overcome Condorcet’s problem, 
Dodgson’s method and Copeland’s method. Essentially we have shown that Dodgson’s and 
Copeland’s ranking will be maximally different for some preference profiles. First, this is of 
interest because such comparisons are not feasible in the usual axiomatic framework and have 
been initiated only recently by Ratliff (2001, 2000a,b). Second, it is of interest because, as we 
showed, the Copeland ranking can be derived from a very attractive distance minimization 
concept. This indicates that the main underlying idea of both Dodgson’s and Copeland’s 
method, namely the closer an alternative from being a Condorcet winner the better, is actually 
identical. The essential difference lies in the informational basis of the two methods. 
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