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ABSTRACT. A contractive method for computing stationary solutions of intertemporal equi-
librium models is provided. The method is implemented using a contraction mapping derived
from the first-order conditions. The deterministic dynamic programming problem is used to
illustrate the method. Some numerical examples are performed.

1. Introduction

In intertemporal economic models one of the main difficulties is to find accurate estimatives
of the stationary solutions. For instance, in dynamic programming models the traditional
method is based on the Bellman approach. This consists in estimating the corresponding
value function using a contraction mapping (see Stokey and Lucas with Prescott (1989))
and then computing the policy function from the approximated value function.

Taylor and Uhlig (1990) described some numerical methods based on the Bellman itera-
tions (i.e., Value-Function Grid and Quadrature Value-Function Grid methods) and Santos
and Vigo-Aguiar (1998) and Maldonado and Svaiter (2001) provided an estimation error
for the approximate policy. However, Bellman’s method has two main disadvantages: it is
only useful when the model can be expressed as a representative agent model and, besides
that, the speed of convergence is slow. On the other hand, numerical methods based on the
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solution of the Euler equation have been more efficient in the two aspects above: they can
be used even when there is no representative agent and they are faster when an adequate
approximation scheme is performed (see Judd (1998)).

The backward iteration algorithm, based on the Euler equation, provides a sequence of
functions which converges pointwisely to the stationary solution. To implement this algo-
rithm, Baxter et.al (1990) used a discretized version of the original problem. And using
Santos and Vigo-Aguiar (2000) result, we know that the distance between the solution
of the discretized problem and the solution of the original one is of order one in the grid
mesh. Coleman (1990, 1991) used a similar approach, however the discretization is not nec-
essary since linear interpolations are performed. Other numerical methods based on Euler
equations are the projection method (Judd (1992)) and the parameterizing-expectations
method (Marcet (1988) and Marcet and Lorenzoni (1998)).

The goal of this paper is also to provide a numerical method based on Euler equations
to compute accurate estimatives of stationary solutions. For this, we define a contraction
mapping which has the stationary solution as its fixed point. Moreover, the metric that
we use is the C! uniform convergence. An important feature of our method is that it also
provides an algorithm that compute the stationary solution for each state variable value.
That is, we do not need to make a grid of the state variables for solving the Euler equation.

The convergence of our method requires a condition which is slightly stronger than
the determinacy of the steady state condition. For the dynamic programming problem
this amounts to the dominant diagonal condition. Some numerical examples are provided
where this condition is satisfied for a realistic parameter set of the models.

The paper is divided as follows. In section 2 we present the deterministic model and
its main hypotheses. In section 3 our contractive method based on the Euler-equation is
presented. Finally, section 4 implements the algorithm derived from this method and gives
some applications. All proofs are given in the appendix.

2. Basic Framework

The intertemporal equilibrium models that we are going to deal with are described by the
following elements: X C R" is the state space, D C X x X x X represents the intertemporal
feasibility set and F : D — R" is the function whose zeros define the temporary equilibria.
We will assume that E is a twice continuously differentiable such that FEs is negative
definite on the interior of D.!

Let |.| be one of the equivalent norms of R™. The associated norm for the real square
matrices space of order n (M,,) will be ||.|.2 Finally, let B,(z) = {y € R"; |y — x| < r}.

An equilibrium path from z¢ € X is a sequence (z;):>0 such that

E(zt-1,%t,Tt41) =0
and a stationary solution for (X, D, E) is a function g: X — X such that:
E(z,9(z),9°(z)) =0

ISince F is a function of (x1,22,23) € D, Ej is the vector of partial derivatives of F with respect to ;.

2IXIl= ~ sup  |Xz|, X €May.
{zeR ;|2|=1}



for all z € X.
We say that z € R" is a steady state if g(Z) = £. We will make the following:

Assumption D. There exists an interior steady state Z and o such that3
(i) [|(B2) " Exll + I(B2) "' Bsl < a < 1
(i) [|(B2) "' Es| < 1/2

Remark: The condition for the existence of a locally unique stationary equilibrium is
that the steady state must be a saddle point of the linearization of E = 0. A necessary
and sufficient condition for this is:*

|(E2) ™ By + (E2) 'Es|| < 1

which is weaker than assumption D.

A basic example of this structure is the dynamic programming problem. Following the
notation of Stokey and Lucas with Prescott (1989),

E(zi—1,2t, 1) = Fa(xi—1,2¢) + BF1 (2, Tey1)

where F' is the return function, 8 is the discount factor and the set D is defined from
technological constraints. In this case g represents the policy function. It is easy to verify
that for the one-dimensional case, assumption D (i) amounts to the dominant diagonal
condition of the Jacobian of F at the steady state.

3. Main Result

In this section we will provide an iterative method for computing stationary solutions in a
neighborhood of a steady state for the model (X, D, E). This method consists in defining
an implicit map from the temporary equilibrium equation and showing that this map is a
contraction with the stationary solution as the fixed point.

Given r > 0, v > 0 and T € R" let us denote

H = {h € C*(B,(2)); h(z) = 2, | Dh(z)|| < a and | D*(z)|| <, Vz € B,(2)}

where C!(B,.(Z)) is the space of I-th continuously differentiable functions from B,.(Z) into
itself and ~ is a constant.
Define the norm

|kl = sup | Dh(z)| , for all h € H.

zE€B,(T)

Let H be the closure of H with respect to this norm. Therefore, (H, || - ||1) is a complete
metric space. Observe that, by the definition of the metric (uniform convergence in the
first derivative), it is easy to see that H is a subset of C*(B,(z)).

3 The derivatives are evaluated at (Z,Z,Z). Observe that (i) implies (ii) when n = 1.
4The quadratic equation 22 4 az 4+ b = 0 has a root with modulus greater than one and the other lower
than one if and only if |a| > |1+ b].



Lemma 3.1. Under D, there exist r > 0, v > 0 and ¢ : H — H such that
E(z,¢n(z), h*(z)) = 0 (*)

for all x € B.(z) and h € H.

Theorem 3.2. Assume D. Then there exist r > 0 and v > 0 such that ¢: H — H defined
in Lemma 3.1 is a n-contraction, for some n € (0, 1).

The proof of Theorem 3.2 shows that the map ¢:H — H is a m—contraction and
consequently has a fixed point. It is easy to see that such a fixed point is a stationary
solution of (X, D, E). Therefore, the map ¢ provides a recursive method for computing
this solution in a neighborhood of the steady state.

The following corollary shows that the recursive method obtained from Theorem 3.2
holds in every neighborhood where assumption D is satisfied.

Corollary 3.3. If the assumption D is satisfied in a convex neighborhood N of Z, then
there exist v > 0 and ¢: H — H satisfying () (where B,.(Z) is replaced by N') and there
exist N > 1 and n < 1 such that ¢ is a n-contraction with fixed point g.

4. The Algorithm and Numerical Examples

In this section we will describe the algorithm derived from Theorem 3.2. But first we will
discuss other methods in the literature.

Let us consider the dynamic programming problem. The first method consists in defin-
ing the following operator from the Euler equation: given a feasible map h : X — X, let
us define Th : X — X implicitly by

Fy(z, Th(z)) + BF1(Th(z), h(Th(z))) = 0.

The optimal policy function g is a fixed point of T' and the sequence (7™ (hg)),, converges
to g pointwise, where hg is constant.®> Indeed, we claim that this approach is equivalent
to Bellman’s method. To see this, define the following sequence of functions:

n = F(z, n—
vn(@) = max  F(z,y) + fvn1(y)

for all n > 1, where A is the feasible set related with the problem and vo(x) = F(z, ho(z)).
From the first order condition and the Envelope Theorem:

F(@, hn(2)) + BF1(hn(2), hn—1(hn(2))) = 0,

5A constant function may not be feasible. In this case we have to choose, for instance, a piecewise
constant hg.



where h,(z) = argmax F(z,y) + fvn,—1(y). Using the definition of 7" and this last
{y; (z,y)€A}

equation, it is easy to see that h,, = T™(hg). Hence, the Bellman method implies that A,

converges to g. In particular, this method is equivalent to Bellman’s one.

Baxter et al. (1990)) implements that method making a discretization of the state
space, whereas Coleman (1990, 1991) used a linear interpolation in each step.

Li (1998) uses a similar method to ours: she defines the same mapping ¢ of Theorem 3.2
and proves that it is a contraction in the C° topology. In Example 2 below we show that
our approach has the following advantages: (i) the set of economies where the contractive
property holds is larger than hers; (ii) the convergence is in the C' topology and, in
particular, the stationary solution is C*.

The Algorithm

We now describe the main steps of the algorithm which implements our contractive
method.® The main difference of our implementation with respect to the methods above
is that it is not necessary to make a discretization of the state space. More precisely, we
can give an accurate approximation of the stationary solution for each z € X.

Let hg : X — X be a constant function (for instance, hg = Z, the steady state). Fix
zeX.

computing hy: solve
E(z,y, h§(z)) = 0.
computing he(x)

first step: find h?(x), i.e., solve

E(h(),y, hg(ha(x))) = 0.
second step: solve
E(z,y,hi(z)) =0
for finding ho(z).
In general, we have to proceed as follows:
computing hyy1(x)

first step: find h2. In order to do this, we have to compute, using the equilibrium
equation, the following sequence

hihn, B2y, hohy, hihohy, h2hohy, h2hn, hshp,...,h:_ h,, B2

where x was dropped in the notation.

6For the examples, we used MATLAB to implement the numerical routines. Upon request, we will
provide the MATLAB code by E-mail. The E-mail address is humberto@fgv.br.



second step: solve
E(z,y,hy(z)) =0

for finding hyp41(z).

Therefore, as we can see the algorithm can compute h,(z) from solely h,_1(z) for each
x € X without making any discretization of the state space in previous steps.

The Ezxamples

1. Deterministic Growth Model

Consider the classical deterministic growth model with utility and production functions:

1—v

— and f(k) = Ak®

u(c) = 1

where v > 0 (for y =1, u(c) =Inc) and 0 < a < 1.
The Euler equation is given by:

E(ZL’,’y,Z) = _(:L,a - y)—’y + Baya—l(ya - z)_’y =0.
For a =1 and v =1 it is possible to determine the operator ¢ explicitly

2
RO
and the optimal policy function g(k) = Bk* which is a fixed point of ¢. It is important
to note that these explicit calculations are not possible for the remaining cases below and,
therefore, this justifies the use of the proposed algorithm.

Using the Mean Value Theorem, we have the following estimative:

[
liom = nall < 75 i = hal,

where || - || is the sup norm. Taking the domain of ¢ as h; € C! such that |Dh|| < M < 3
it results that ¢ is a contraction. It is important to note our theorem guarantees a C'-
contraction probably in a smaller domain.

In figures 1 and 2 we show the numerical results of our method in two particular
specification of the parameters: 3 = .95 and domain [.05;1]. The initial function is
ho(k) = min {k, k}.

In figure 1, u(c) = In(c), @ = .34 and the optimal policy function is the continuous
line and the iterations h; and h10 (which is close to g) are the dotted lines (the distance
between hg and hig is 1.349 x 10~7). In figure 2, if ¥ = .2 and o = .5, then the true
optimal policy is not explicitly known and we only show the iterations h; through hg in
dotted line and hjg in continuous line (the distance between hig and g is 1.087 x 10~9).
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Growth Model with Logarithmic Utility Function
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F1GURE 1: Deterministic growth model with u(c) =1Ilnc, A =5,
a = .34, 8 = .95 and iterations= 10.

Growth Model with Power Utility Function
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FIGURE 2: Deterministic growth model with v = .2, A =5,
a = .5, = .95 and iterations= 10.



2. A Monetary Model (Li (1998))

Li (1998) presents a monetary model with preferences given by U(c) = c!~4/(1 — A)
(A >0and A # 1) and discount factor 0 < 8 < 1. The intertemporal equilibrium equation
for this model is given by:

p
E(pi—1,pt; pev1) = Pt + Qb(—t)pt—l -1=0
DPt+1
where p; is the (scaled) price of the economy in period ¢ and ¢(z) = ﬁ”f,_ﬁ%.
A stationary solution is defined by a function g : [0,1] — [0, 1] such that

1 —w(g;‘)’(—;()@) — (),

which gives a steady state equilibrium value: p = 1/(1 + ¢(1)).
Our assumption D imposes the following bounds for the parameter values:

{ 0<g(l) <1-=21¢'(1)] if (1) € (-1,0)
0<o(l)<1 if ¢'(1) > 0.

Thus, the required parameter value set in Li (1998) are strictly included in ours, as one
can easely check. Moreover, the convergence is in the C'-topology (instead of the C°-
convergence found by Li (1998)).

Figure 3 shows stationary solution approximations for the following parameter values:
A = .4 and B8 = .99 and the interval of price is [.05;1]. We made ten interactions where
the continuous line represents the tenth one (the distance from the ninth is 1.361 x 10~8).

Monetary Model of Li (1998)

0.9
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08~
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0.55 1 1 1 1 I I 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3: Stationary solution of the monetary model of Li (1998)
with A = .4, § = .99 and iterations= 10.



3. Growth with Externalities Model (Boldrin and Rustichini (1994))

Boldrin and Rustichini (1994) analyzes a two-sector growth model with labor externality.
The utility function is linear and the technological frontier is characterized by:

T(z,a' k) = (" — 2")%(z — y2')! 7
where z is the current capital value, ' is the next period capital value, k is the current
aggregate capital stock which is considered as an externality in the total number of units

of labor and «, € (0,1). In this case the intertemporal equilibrium equation is given by:

E(xt, xoq1, Teq2) = To(xe, Tog1, T¢) + BT (To41, Toq2, Teg1) =0

and the unique interior steady state is

z=( (B-=7(1=-0a) )1/,
B=71-a)+ (1=
In this model, condition D is:

|To2 + B(T11 + T13)| > B|T12| + |Th2 + Tas]

which is stronger than the condition for the existence of a saddle steady state (see the
remark after assumption D).

Figure 4 shows the approximations of the stationary solution around the steady state
for parameter values that satisfy assumption D. The parameters are: a = .5, 8 = .95,
v = .5, n = .5 and the interval of capital is [.05;1]. We did ten interactions where the
continuous line represents the tenth one (the distance from the ninth is 2.233 x 10~7).

Two-Sector Growth Model of Boldrin and Rustichini (1994)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

FIGURE 4: Stationary solution of the two-sector growth model of
Boldrin and Rustichini (1994) with o =7 =~ = .5, 8 = .95 and iterations= 10.
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5. Conclusions

In this paper we provide a recursive method to approximate the stationary solution of the
Euler equation for intertemporal deterministic models. Its major difference from classical
methods is that it is performed from a contraction mapping in the C'-topology of a suit-
able functional space. In particular this implies the continuously differentiability of the
stationary solution.

The required hypothesis is an open condition related with the first derivatives of the
structural equations evaluated at the steady state. This hypothesis is slightly stronger
than the determinacy of the steady state condition.

Another interesting feature of this method is that the algorithm that implements it
needs neither a discretization of the state space nor a piecewise linear approximations of
the iterations. Our algorithm is illustrated by numerical examples applied to some models
in the literature.

APPENDIX

Proof of Lemma 3.1: Assumption D implies that there exists r > 0 such that B,.(Z,Z,z) C
D and

5o |B; Bull + || B3 Bal| < a (1)
and
sup ||E; 'Es| < 1/2. (1)
B,(%,%,%)

Let h € H and observe that the function (x1,z2) — FE(x1,z2,h?(x1)) defined on a
neighborhood of (Z, ) is twice continuously differentiable,

E(z,%,h*(Z)) = E(%,%,Z) =0

and Fs(z1,2,h?(x1)) is a negative definite matrix for all (z1,z2) in a neighborhood of
(Z,z). By the Implicit Function Theorem, there exist €¢1,e2 € (0,7) and a continuously
differentiable function ¢ : B¢, (Z) — Be,(Z) (¢ = ¢p) such that

E(z1,20,h%(21)) =0, 2; € B,(T),1=1,2 <= x5 = p(x1).
Moreover, for each z in B, (Z),
Dy(z) = =By (z, p(z), h*(2))[E1 (2, ¢(2), B*(2)) + Es(z, ¢(z), h*(z)) Dh(h(z)) Dh(z)]

= |[Dep(z)|| < sup |E5 Ey| + |Es'Es|| < a, for all z € B, ()

Br(a:,a:,m)

because of (I) and the fact that | Dh(z)| < a <1 on B.(Z).
Observe that

o(z) = 7 + /O D(z + t(z — 7))@ — F)dt , for all z € B, ()

10



= |p(z) —Z| < sup ||[Dp(Z+i(z—7))||z—Z[<ea
t€[0,1]

and, therefore, we can suppose that € = ¢; = €.

We claim that we can take e = r. Let r* = sup {e > 0; ¢ is defined on B.(Z)}. Suppose
that r* < r. First, for each z; € B,«(Z), there exists a unique z3 € B,«(Z) such that
E(x1,z2,h%*(x1)) = 0. Otherwise, there exist x5 and T2, T2 # I, satisfying the last
equality. Define f:[0,1] — R by

f(t) = (.’L‘g — :172)’E(:L‘1,:L‘2 + t(ZL‘Q — (L‘~2), hz(.’L'l)).

Then f(0) = f(1) = 0 and f'(t) = (€2 — x2) E2(x2 — #2) < 0. Since E; (calculated at
(z1, 2 + t(zo — T2),h%(x1))) is a negative definite matrix, this is a contradiction.

Let z be a point on the border of B,«(Z). Let (z,,)n>0 be a sequence in B,«(Z) converging
to z. Since ((zn))n>0 is a sequence in B, (Z) (a compact set), there exists a subsequence
converging to a point y € B,«(Z). By the continuity of E(-, -,h2(-)), E(z,y, h?(z)) = 0.
However, y is uniquely determinated, implying that the sequence (¢(zn))n>0 converges
to y. We can apply again the Implicit Function Theorem at (z,y, h?(z)) for the Euler
equation. Doing this for all points on the border of B,«(Z), we can extend ¢ to a ball
centered at Z which contains (strictly) B,«(Z). This contradicts the definition of 7*.

Now we choose the constant v > 0. Let us calculate the second order derivative of ¢:

D*p(z) = — [D(E; " E1) + D(Ey ' E3) Dh(h(z)) Dh(z)]
— By ' B3[D*h(h(z))(Dh())* + Dh(h(z))D*h(z)]
(calculated at (z,p(z), h?(z)). Taking the supremum on the right side and using (II) we

have’
||D2‘P($)” <a + (a27+07)SUPBT(:E,5;,:E)||E2_1E3|| < c +cey

where ¢; > 0 and 0 < ¢3 < 1 (by (II)). Choose ~ sufficiently large such that c; + coy < 7.

Proof of Theorem 3.2: Let B C M,, be the unit ball. Since E is C?, there exists r > 0
such that the map
U: B.(%,%,7) x B2 = M,

defined by
U (w1, x2, 23, M1, My) = —E3 (1, T2, x3)[E1(21, T2, T3) + E3(1, T2, 73) My Mo)]
is a Lipschitz function, i.e., there exists L > 0 such that:
3
19", MY) = U(2®, M?)| <L |z} —af| + S, [|Mf — M| + | M3 — M3|[]  (I11)
i=1

7Observe that one of the components of the derivative of E5 1Ey and E5 1 B3 involves the derivatives of ¢
and h which are uniformly bounded by a.
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where we are denoting x* = (x%,2},2%) € B,(2)3, M* = (M}, M$) € B2, i = 1,2 and
Sr = Supp, (z,z,z) ||E2_1E3”

The fact that E is C' and assumption D (ii) guarantee that we can choose r > 0 such
that S, < 1/2. Finally, we choose such r satisfying Lemma 3.1 and:

(Lra+ S;)(2+ ) B
1—Lr N

N <1

(notice that |n, — 2S,.| — 0 when r — 0).

We will prove that the function ¢: H — H defined by ¢(h) = @3 is a n.-contraction
mapping (pp defined in Lemma 3.1).

Given hq, he € H, by Lemma 3.1, for i = 1,2 and = € B,(Z),

Dop, (x) = U(x, pn, (), hi(x), Dhi(hi(z)), Dhi(z))
Observe that
Dh? = Dh;(h;)Dh;, i = 1,2
and

Dhy(h1)Dh1 — Dhy(hg)Dhy =(Dhi(hy) — Dhg(h1))Dha
+ (DhQ(hl) — Dh2(h2))Dh1 + Dh2(h2)(Dh1 — th)

Thus,
IR — h3ll1 < allhy — halli + eyr||hs — holly + allhy — ka1 (Iv)

by the definition of || - ||; and the space H.
Therefore, from (/1) and (IV)

ln, = @nsllt < L(rlln, = @nslls + 72 +97) A1 = hall1) + (2 +77)Srlh1 = hells

= [[on, — @hallt < nellh1 — b2l

So p:'H — 'H is a n,.—contraction. It is easy to see that we can extend continuously ¢
to H. Let ¢ also denote this extension, then we obtain a 7, —contraction on D,. By the
Banach Fixed Point Theorem, there exists g € D, such that ¢, = g and

le™(h) —glli < )|k —g|l1, forall h € D,.

Proof of Corollary 3.3: Fix » > 0 and let p > 0 be such that a(r + p) < r (i.e.
p < 1=2r) and assumption D holds in B,4,(Z) N C. From assumption D(i), the choice
of p guarantees that for each h € D,y,, h(z) € B,(Z) for all z € B,4,(Z). Let B =
B.(%), A= B,1,(Z) — B and |.|, || the C%*-norm for i = 0,1 on A and B, respectively.
For hi, hy € Dy4,(Z) we have:

12



0k — Pha|ft < L{ploh, — Onoli + |0hy — 0o |8 + plhZ — K21 + |h2 — K218}

+Srip[VIh1 = hald + |h1 — ha|P] + Srypy|h1 — ho|f

From definitions of |.|#* and |.|” we have the following inequalities:
(AT — h3l1 < alhi = holf’ + aylplhy — holf! + [h1 — ha|g] + alh1 — ha|{);

h3 — h3|§ < r(a+1)|hi — ha|?; |h1 — holg < |h1 — hal§ + plh1 — hal{;

|‘Ph1 - ‘phz'(])g < r|90h1 - 90h2|{3 < 7Mr]7‘|h1 - h2|{3

Using these last three inequalities in the first one we get:
(1= Lp)lpn; = ¢ha i’ < [Lap+ Srip)(1 +7p) A1 — half!

+[Lap(1 +7) + Lr(n + a+ 1) + Spqp(ry + D] |hy — ho|P.
Defining

{ ap = [Lap + Sr1p)(1 +p)(1 — Lp)~*
Yo = [Lap(1+7) + Lr(ne + o+ 1) 4+ Sy p(ry +1)](1 — Lp)

we have that
0hy — Ohalf < aplha — half 4+ 7,lh1 — ho|f.

By induction

n—1

[Pny = eralf < aflha = hal{ +95( D ap 7 k) [he — ha| P < alha — hol V7.
=0

where
Y = Max{a;‘, ny,(Max{a, , np})"_l}-

Since o, — S, < 1/2 when p — 0 and 7, < 1 then, for all p > 0 small enough, we can find
n > 1 such that v, < 1, so ¢™ is a v,-contraction.
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