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Abstract

A bifactor model of the unobserved common leading and coincident indicators with Markov
switching, introduced via the common factor intercept term, is examined. The model has four
regimes and the lag between the leading and coincident factors is reflected in transition
probabilities matrix. Three hypotheses concerning the relationship between the two factors
are evaluated: (1) cyclical dynamics of the two factors are independent; (2) cyclical dynamics
are common for both factors; (3) dynamics are interrelated, with coincident factor lagging
behind the leading factor. The models are estimated using US monthly macroeconomic time
series. The estimated recession probabilities reveal close correspondence to NBER business
cycle dating. Moreover, model 3 shows that the leading factor is entering the recession 5
months and the expansions 9 months earlier than the coincident one. This permits timely
forecasting of the future evolution of the coincident economic indicator.
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1 Introduction

The objective of the paper is the simultaneous construction of both coincident
indicator and leading indicator of the macroeconomic activity, which would
allow tracing of evolution of the business cycle in order to be able to predict
the recessions of the coincident indicator using those of the leading indicator.
While the coincident indicator can be used to characterize the current state of
the "business climate”, the leading indicator may serve to forecast the changes
in this state which would take place within the next several periods.

For the construction of the indicators in question we are using the dynamic
factor analysis methodology. One of the most influential dynamic single-factor
models of the coincident economic indicator with linear dynamics is that by
Stock and Watson (1988), while the single-factor models with Markov-switching
dynamics were proposed first by Chauvet (1998), Kim and Yoo (1995). Until
now, to our best knowledge, no one has come with a multifactor model (incor-
porating both leading and coincident common factors) with regime switching.

This paper introduces a two-factor model with regime-switching dynamics
where one of the latent factors is postulated as a common leading indicator, while
the second factor is taken to be the common coincident indicator. The common
leading and coincident factors are estimated from a set of observed time series
which is split into a subset of leading and a subset of coincident variables. The
assumed leading relationship is reflected in the transition probabilities matrix
governing the shifts in the regimes of the two common factors. Here we base
our analysis on that of Phillips (1991) who showed, using a bivariate regime
switching model, how the time lags between two observed variables with Markov-
switching dynamics can be expressed in terms of the transition probabilities.

The remainder of paper is organized as follows. Section 2 formulates three
bifactor models with regime-switching dynamics differing in the way the cyclical
evolution of both factors is defined. In section 3 these three Markov-switching
models with leading and coincident common factors are estimated using the
U.S. Post-War monthly macroeconomic data. Section 4 summarizes the results
of the paper. All the tables and graphs are put into the Appendix following the
list of references.

2 Model

It was observed by many authors, among them by Diebold and Rudebusch
(1996) that the model of the business cycle would be incomplete if it would
not take into account both the comovement of various macroeconomic vari-
ables and the asymmetries between the phases of the cycle. The linear leading-
coincident factors model would incorporate only the phenomenon of the simul-
taneous changes in the levels of different individual time series. However, it
lacks a mechanism which would reflect the qualitatively different behavior of
these series during recessions and expansions. One of the ways to introduce this
mechanism in our model is to add to it the regime-switching dynamics.



We consider two sets of the observed time series: leading and coincident.
The common dynamics of the time series belonging to each of these groups are
explained by a single common factor: leading factor for the first group and
coincident factor for the second group. The idiosyncratic dynamics of each time
series in particular are captured by one specific factor per each observed time
series. Therefore the model can be written as:

Ay, =TAf +w (1)

where Ay, = (Ayp | Ath)/ is the n x 1 vector of the observed time series in the
first differences; Afy = (Afre | A fCt)/ is the 2 x 1 vector of the latent common
factors in the first differences; u; = (ur; | UCt)/ is the n x 1 vector of the latent
specific factors; I' is the n x 2 factor loadings matrix linking the observed series
with the common factors.

The dynamics of the latent common factors can be described in terms of a
nonlinear VAR model:

Afe=pls)) + P(L)ASfe1 + e (2)

where p(sy) = {p(se), pe(se)} is the 2 x 1 vector of the state-dependent in-
tercepts of the common leading and coincident factors, correspondingly, which
take different values depending on the regime; ®(L) is the sequence of p (p =
max{pr,pc}, where pr, is the order of the AR polynomial of the leading factor,
and p¢ is the order of the AR polynomial of the coincident factor) 2 x 2 lag poly-
nomial matrices; e; is the 2 X 1 vector of the serially and mutually uncorrelated
common factor disturbances with possibly state-dependent variance:
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where s; is the unobserved regime variable. In the two-regime (expansion-
recession, or high-low growth rate) case it takes two values: 0 or 1. Depending
on the regime, the common factor’s intercept assumes different values: low in
contractions and high in expansions. Thus, the common factors grow faster
during the upswings and slower (or even have negative growth rate) during the
downswings of the economy.

The changes in the regimes are governed by the first-order Markov chain
process, which is summarized by the transition probabilities matrix, whose char-
acteristic element is p;; = prob(s; = j|si—1 = 1).

Since we have two common factors each of which passes through its own low
and high regimes, the whole process is to be cast in a four regimes framework
as it is done in Phillips (1991). Namely:
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where s and s¢ are the unobserved state variables for leading factor and coin-
cident factor, respectively.

The way the unobserved regimes of leading indicator and coincident indicator
are interrelated affects the form of the 4 x4 transition probabilities matrix. First,
we may suppose that the state variables s& and s¢ are mutually independent.
In that case the transition matrix, m, looks like:

php§) (1 - pl)p$ pi(1 —p%1) (1—ph)(1—p%)
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In fact, 7 = 7 ® 7L, where 7% and 7¢ are the transition probabilities
matrices for state variables sl and s{.

Second hypothesis may be that there is no two different state variables,
but only one representing a single process and that both common factors enter
into each regime simultaneously, without any lags among the two factors. In
other words, the recessions (expansions) of the leading factor are the recessions
(expansions) of the coincident factor. In this case there is no sense to talk
about leading factor, because both factors are coincident. This case may be
represented with an ordinary two-regime transition probabilities matrix:

_ P11 1 —pn
T =
1 —pa P22
Under the third hypothesis the two unobserved processes are interrelated,
with leading factor entering the recessions (expansions) several periods earlier
than the coincident indicator. As Phillips (1991) remarks, the model with an
integer lag exceeding one period would require a Markov process with the order
higher than 1. However, the real-valued (positive) lag can be modeled with a

first-order Markov process by constructing the following transition probabilities
matrix:

P11 1—]9%1 0 (1)
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where A and B are the expected leads in the recession and expansion, corre-
spondingly. The expected duration of this regime (s; = 1) is:

A=1+p(sg =181 =1)+p(s; = 1sy_1 = 1)2 + ...
that is
_ 1
A= 1—p(si=1|si—1=1)
Thus, we can analyze the three above stated cases - independent cyclical
evolution of leading and coincident factors (let us call it model 1), identical



cyclical evolution of both factors (model 2), and similar cyclical evolution with
coincident factor lagging behind the leading indicator (model 3) - and compare
the resulting three hypotheses to check whether the leading common factor is
really leading and if so, how far it is advancing the coincident common factor.

We assume for simplicity that the two factors are related only through the
transition probabilities, no correlation and no Granger-causality among these
factors being assumed. The last premise is, however, feasible and it was con-
sidered in our previous paper - Kholodilin (2001). This assumption means that
the matrices ®; (i = 1,...,p) are diagonal or lower diagonal for all i:
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The idiosyncratic factors are by definition mutually independent and are
modelled as the AR processes:

uy = V(L)ug—y + 1, 3)

where ¥(L) is the sequence of ¢ (¢ = max{q,. ., ¢y}, where g¢; is the order of the
AR polynomial of the ¢ — th idiosyncratic factor) n x n diagonal lag polynomial
matrices and 7, is the n x 1 vector of the mutually and serially uncorrelated
Gaussian shocks:
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To estimate this model we express it in a state-space form:

Ay = AB, (4)

By =al(st) + CB_1 + vt (5)

where 8, = (f;|us)' is the state vector containing stacked on top of each other
vector of common factors and the vector of specific factors; v; is the vector of the
common and idiosyncratic factors’ disturbances with mean zero and variance-
covariance matrix Q; a(s) = (1, (st), e (8e), ..., 0) is the state-dependent vec-
tor of intercepts. The structure of the system matrix A is defined as in Kholodilin
(2001), while matrix C' has somewhat different structure given the fact that the
assumption of Granger causality between the common factors has been removed
from this model:
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where matrices ®%, ®¢ and ¥! (i = 1,...,n) are formulated exactly the same
way as in Kholodilin (2001).

There are different ways of estimating the unknown parameters and the la-
tent factors (maximum likelihood, EM, MCMC techniques - see Kim and Nelson
(1999) for more details). Here we applied the maximum likelihood method with
log-likelihood function obtained using Kalman filter recursions. To save space
we will not present them here, referring the reader, for instance, to Hamilton
(1994) who gives very clear and systematic explanation of the Kalman filter
methodology.

3 Real example

The linear two-factor model was estimated using the US monthly data from
January 1959 to December 1998. To construct the leading common factor the
data from Watson (2000) were used, namely one real and three financial time
series: authorized housing - total new housing units in thousands (HSBR),
spread between the US Treasury bills 3-month interest rate and federal funds
effective annualized rate (SFYGMS3), spread between the US Treasury bills with
constant maturity 1-year interest rate and federal funds effective annualized rate
(SFYGT1), and NYSE common stock price index (FSNCOM). The common
coincident factor was estimated based on the four real time series borrowed
from Mariano and Murasawa (2000): employees on nonagricultural payrolls;
personal income less transfer payments; index of industrial production; and
manufacturing and trade series.

The leading time series were selected by comparing them individually to a
coincident factor computed as if it were not dependent of a hypothetical lead-
ing common factor. Figure 1 shows that the correlation between these series
(SFYGM3, SFYGTT1 in levels and the first differences of the log of HSBR and
FSNCOM), on one hand, and the growth rate of the common coincident indica-
tor, on the other hand, is relatively high at leads 4-5. It is also very important
that the series are sufficiently highly correlated among each other, thus per-
mitting to postulate existence of a latent common factor standing behind their
common evolution.

All the three models were estimated under the identifying assumption of
the first factor loading for each common factor being equal 1. The parameter
estimates, together with their standard errors and corresponding p-values, of the
three models can be found in Tables 1-3 of Appendix. In all the models both
the common and specific factors are taken to follow autoregressive processes of
order 0. Otherwise the number of parameters to estimate would be too high.



Both the model with independent leading and coincident indicators and the
model with the leading and coincident indicators having the same cyclical dy-
namics with coincident factor lagging behind the leading one seem to bring
significant increase in the maximum likelihood compared to the model with two
common factors having common cyclical dynamics. The independent factors
model turns out to outperform slightly the model 2. However, model 2 delivers
some additional information of interest, namely the leads in low and high states.
According to Table 2 the leading factor enters the recessions on average approx-
imately 5 months earlier than the coincident factor and goes into the expansions
roughly 9 months earlier than the common coincident indicator does.

Figure 2 represents the three estimates of the common leading and coincident
factors corresponding to the three models: independent leading and coincident
factors, two coincident factors with common dynamics, and leading and coinci-
dent factors with common dynamics. The common factors were reconstructed
as the partial sums of their growth rates obtained as an output of the estimation
procedure. Therefore they follow random walks. Nevertheless, their profiles are
quite similar regardless of the model. The coincident factors in all three cases
seem to lag almost always the leading indicators.

On Figure 3 the conditional (smoothed) probabilities of the regimes 1, 2,
and 3 are depicted estimated for the case of supposedly independent leading and
coincident indicators. Remind that regime 1 corresponds to the leading indicator
signalling the low state and coincident indicator still being in the high state,
while in the regime 2 the leading factor is already in high state and coincident
factor staying in the low state. Not surprisingly the conditional probabilities of
state 1 are leading those of state 2. Only one recession fails to be captured by the
regime 1 probabilities - that of the end of 1950s. However, it is easy to explain
- the leading factor recession must have started well before the beginning of our
sample. Regime 3 means that both common factors are in the low state. This
regime is superimposed on the National Bureau of Economic Research (NBER)
business cycle chronology for the U.S. economy. The conditional probabilities
of both factors being simultaneously in the recession coincide almost perfectly
with the NBER dating.

Figure 4 reflects the recession probabilities for the model 2. In this case, since
both factors have common cyclical dynamics, there are only two states: low and
high. Hence we display only the (filtered and smoothed) recession probabilities
against the NBER dates. These probabilities are slightly leading the NBER
cycle, the leading factor playing more prominent role in the determination of
the conditional probabilities.

Figure 5 is pretty similar to Figure 3. On the upper panel one can see the
regime 1 and regime 2 conditional probabilities, the former leading the latter.
While on the lower panel the regime 3 probabilities are plotted versus the NBER
cycle. Again, there is quite close correspondence between our dating and that
of the NBER.



4 Summary

The paper introduces a multifactor model with two common factors (leading
and coincident) having regime-switching dynamics. The lead-lag relationship
between the common leading and coincident factors is reflected in the transition
probabilities matrix.

The model was applied to the US Post-World War IT monthly macroeconomic
data. Its estimation results imply that the common coincident factor is lagging
behind the common leading factor 5 months when entering into contractions
and around 9 months when going into expansions. Moreover, there exists a
close correspondence between our estimated recession chronologies and those
provided by the NBER.

The overall conclusion is that it is feasible to use this bifactor model for
forecasting the evolution of the US Post-War coincident economic indicator and
its turning points up to the horizon of nine months.
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5 Appendix

Table 1. Estimated parameters of model 1
Log-likelihood: -4633.5

| Parameter | Estimated | St. error | p-value |

PrL.11 0.988 0.01 0.0
PrL.22 0.921 0.04 0.0
Pc.a1 0.980 0.01 0.0
PL.22 0.892 0.04 0.0
1 0.084 0.02 0.0
Lo -0.527 0.11 0.0
ot 0.255 0.04 0.0
Hro -1.330 0.132 0.0
Y12 0.745 0.241 0.0
Y13 3.520 0.693 0.0
Y14 3.46 0.672 0.0
Yag 0.786 0.05 0.0
Yor 0.898 0.06 0.0
Yog 0.655 0.06 0.0
o2 0.936 0.06 0.0
o3 0.963 0.06 0.0
0% 0.228 0.03 0.0
o2 0.256 0.03 0.0
o2 0.279 0.04 0.0
o2 0.554 0.04 0.0
o2 0.419 0.04 0.0
o2 0.689 0.05 0.0
o2 0.018 0.007 0.01
r% 0.380 0.042 0.0




Table 2. Estimated parameters of model 2
Log-likelihood: -4682.6

| Parameter | Estimated | St. error | p-value |

P11 0.988 0.01 0.0
1—pao 0.066 0.03 0.01
L1 0.084 0.02 0.0
Lo -0.434 0.09 0.0
ot 0.134 0.04 0.0
Hro -0.689 0.10 0.0
Y12 0.746 0.25 0.0
Y13 3.980 0.82 0.0
Y14 3.61 0.75 0.0
Yog 0.829 0.06 0.0
Yorr 0.998 0.06 0.0
Yos 0.738 0.06 0.0
o2 0.945 0.06 0.0
o3 0.969 0.06 0.0
0% 0.164 0.03 0.0
o 0.311 0.03 0.0
o2 0.358 0.04 0.0
o2 0.558 0.04 0.0
o2 0.360 0.04 0.0
o2 0.649 0.05 0.0
o2 0.016 0.01 0.01
erC 0.548 0.06 0.0




Table 3. Estimated parameters of model 3
Log-likelihood: -4641.1

| Parameter | Estimated | St. error | p-value |

P11 0.983 0.01 0.0
P22 0.873 0.05 0.0
A 4.950 2.18 0.01
B 8.840 3.5 0.01
[, 0.090 0.02 0.0
Lo -0.467 0.09 0.0
L 0.278 0.04 0.0
7 -1.040 0.10 0.0
V1o 0.760 0.25 0.0
Y13 3.590 0.71 0.0
Yia 3.530 0.69 0.0
Yog 0.791 0.05 0.0
Yor 0.889 0.06 0.0
Yog 0.656 0.06 0.0
o2 0.938 0.06 0.0
o3 0.963 0.06 0.0
o2 0.229 0.03 0.0
o2 0.254 0.03 0.0
o2 0.277 0.04 0.0
o2 0.548 0.04 0.0
o2 0.429 0.04 0.0
02 0.688 0.05 0.0
o 0.018 0.01 0.01
o2, 0.433 0.04 0.0
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Cross-correlation of common coincident factor and observed variables

US monthly data 1959:1-1998:12
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Common leading and coincident indicators

Independent leading and coincident indicators
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Model 1. Recession probabilities

Regimes 1 and 2 probabilities
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Model 2. Recession probabilities

Filtered recession probabilities vs. NBER chronology
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Model 3. Recession probabilities

Regimes 1 and 2 probabilities

‘1\ n [ | " ’f —  REG1
[ I I | I X
[ N ! {1 - . --- REG2
[ I i \ " ‘ \
[ I " \ I i |
[ I " \ I , \
. ‘\ 1l | I \
. " 1l | i |
o I 1l \ i \
\‘ I \\‘ 1 | \‘ |
| | 1 | |
I : : \‘ " | " I
- I ' I [l |
- I ' I [ \
- . 0 I [ |
| ) I I [l |
| ' L I [ |
‘ ' Il I [ |
‘ ' Il i 1 \
i I ! I [ |
I 1! I [ \
| - I oo |
| I | I [ \
\ I ! | [ ) \
UL LU UL U LU LU LU LU LU LS L
1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
Regime 3 probabilities vs. NBER chronology
1 T T T T T T 11 USRI [RSUNRL U USUSILESUSY U USRI
1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998

Figure 5:

15




