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Abstract

We propose a bootstrap algorithm for autoregressions based on the approximation of the data
generating process by a finite state discrete Markov chain. We discover a close connection of
the proposed algorithm with existing bootstrap resampling schemes, run a small
Monte−Carlo experiment, and give an illustrative example.
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1. Introduction

A good resampling procedure that generates bootstrap samples with dependence struc-

ture adequately representing the underlying data generating process (DGP), is a critical

requirement for successful bootstrap inference with stationary time series data. Earlier pro-

posals, like the residual bootstrap and block bootstrap, leave one dissatisfied for one reason

or another. Recently there has been a movement towards nonparametric bootstrap algo-

rithms that incorporate estimation of the conditional probability measure. Among these is

the Markov conditional bootstrap (Rajarshi, 1990, Horowitz, 2001), where the conditional

density is estimated by kernel methods and bootstrap data are generated by successively

sampling observations according to the estimated density. In a recent paper, Paparoditis

and Politis (2001a) proposed a resampling scheme called the local bootstrap (LB) that does

not require estimation of multivariate densities and sampling from a continuous distribu-

tion (see also Paparoditis and Politis, 2001b). The authors motivate the LB by its being

a direct extension of Efron’s (1979) bootstrap for IID data to the case of stationary time

series models with Markovian structure.

In this note, we propose a similar resampling algorithm, the Markov chain bootstrap

(MCB), based on the approximation of the DGP by a finite state discrete Markov chain.

Previous literature where Markov chain approximation was used includes Tauchen (1986)

where it helped to numerically solve an integral equation, and Gregory (1989), where it

helped to test for ARCH effects. It turns out that extending the MCB in a natural way yields

the LB algorithm. Thus the MCB provides a convenient link for motivation of the LB. Also,

we discover the relation of the MCB and LB to Hansen’s (1999) nonparametric bootstrap

designed for models with conditional moment restrictions. A simulation experiment shows

that the MCB has attractive size properties in small samples. In an application to US GNP,

the MCB inference leads to an acceptance of the null of no predictability within a simple

class of models, while the asymptotic inference – to its strong rejection.

Paparoditis and Politis (2001a, section 3) show asymptotic validity of the local bootstrap

for linear statistics of geometrically strong mixing Markov processes under smoothness and

boundedness (away from zero on a compact set) conditions placed on the transition density.

We conjecture that in similar circumstances the MCB is asymptotically valid too. There do

not yet exist results on whether the LB achieves an asymptotic refinement, but the closely

related Markov conditional bootstrap does deliver higher order improvements under suitable

conditions relative not only to asymptotics, but also to the block bootstrap, as shown in

Horowitz (2001, sections 3–4) for Markov and even approximately Markov processes that

are geometrically strong mixing.
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2. Markov chain bootstrap

The MCB resampling algorithm is based on the approximation of the unknown DGP by

a finite state discrete Markov chain. Suppose that we have a (possibly nonlinear) stationary

autoregression for variable yt, with L lags present on the right hand side as vector y−t . Let

us partition the support Ψ of yt so that Ψ =
⋃I
k=1 Ψk. This also induces partition of the

support of the regressors y−t : Ψ− = ×L`=1

⋃I
k`=1 Ψk` . Let us also associate y with its bin Ψ(y)

in the partition, i.e. Ψ(y) = Ψk for such k that y ∈ Ψ(y). Similarly, let Ψ−(y−) = ×L`=1Ψk` ,

where k`, ` = 1, · · · , L, are such that y− ∈ Ψ−(y−). Thus, any pair (y, y−) is associated with

its cell Ψ(y)×Ψ−(y−) in the partition.

We approximate the conditional density f (y|y−) by its discrete state space analog, an

IL by I transition matrix of the finite state discrete Markov chain filled with probabil-

ities Pr (Ψ(y)|Ψ−(y−)) . These probabilities are unknown but may be nonparametrically

estimated from the sample whenever the cell Ψ(y)×Ψ−(y−) is not empty:

P̂r
(

Ψ(y)|Ψ−(y−)
)

=
P̂r (Ψ(y)×Ψ−(y−))

P̂r (Ψ−(y−))

=

(T − L)−1
T∑

t=L+1

I (yt ∈ Ψ(y)) I
(
y−t ∈ Ψ−(y−)

)
(T − L)−1

T∑
t=L+1

I

(
y−t ∈ Ψ−(y−)

) , (1)

where I (·) is the indicator function.

Now we are ready to construct a bootstrap sample. The initial L bootstrap observations

are jointly drawn randomly from the sample, or simply set equal to those in the sample.

Consider L < s ≤ T. Suppose that the part y∗1, · · · , y∗s−1 of the bootstrap sample has

been constructed. The next bootstrap observation y∗s is drawn from the (T − L)-tuple

(yL+1, · · · , yT ) with probabilities (q̂L+1, · · · , q̂T ) , which we call the resampling rule, where

each q̂τ , τ = L+1, · · · , T, is an estimate of the following probability of selecting the candidate

yτ conditional on the bootstrap regressor:

qτ = I
(
Ψ−(y−τ ) = Ψ−(y−∗s )

)
× Pr

(
Ψ(yτ )|Ψ−(y−τ )

)
×
∣∣Ψ(yτ )×Ψ−(y−τ )

∣∣−1
, (2)

where |·| counts observations within a cell. The first term converts the regressors to the

terms of bins in the partition. The second term is the transition probability of the designed
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Markov chain corresponding to the candidate’s cell. The third term converts the bins back

to the terms of y. If the transition probability is estimated by (1), then

q̂τ ∝ I
(
y−τ ∈ Ψ−(y−∗s )

)
. (3)

The number of observations within the cell drops out, and as a result we have a very simple

resampling rule: the unit probability mass is distributed uniformly among those yτ ’s in the

sample whose regressors y−τ belong to the same bins as the bootstrap regressors y−∗s do.

The indicator function in (3) may be viewed as a proximity measure based on a histogram

kernel. If this measure employed a smooth resampling kernel, the MCB resampling rule

would be that of the local bootstrap of Paparoditis and Politis (2001a, 2001b):

q̂τ ∝ Kh

(
y−τ − y−∗s

)
, (4)

where Kh (·) is a bandwidth-rescaled resampling kernel.

Also note that the resampling rule (4) solves the following optimization problem:

(q̂L+1, · · · , q̂T ) = arg max
(qL+1,···,qT )

{
T∑

τ=L+1

Kh

(
y−τ − y−∗s

)
log (qτ ) s.t. qτ ≥ 0,

T∑
τ=L+1

qτ = 1

}
.

This is a problem of the local empirical likelihood estimation of the conditional distribution.

Recently Hansen (1999) suggested a nonparametric bootstrap procedure based on empirical

likelihood that is designed for inference in problems with a conditional moment restriction.

Hansen’s optimization problem for the resampling rule is as one above, except that it con-

tains an additional constraint due to the moment restriction. This constraint distorts the

resampling rule away from (4). Therefore, the MCB and LB may be viewed as special

cases of Hansen’s (1999) algorithm when applied in the absence of a conditional moment

restriction.

3. Simulation evidence

In this small simulation experiment, we study the MCB inference about the slope of the

linear projection of a stationary variable yt on its own one-step-back past:

yt = µ+ αyt−1 + et, (5)

where et is the projection error with properties E[et] = E[yt−1et] = 0 that render the OLS

estimators µ̂ and α̂ consistent. The autocorrelation properties of the error et depend on
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the true DGP generating yt. We consider three alternative mechanisms that imply the true

value of 0 for both µ and α:

DGP A : yt = εt,

DGP B : yt = 1
2
yt−2 + εt,

DGP C : yt = 1
2
yt−2εt−1 + εt.

In all of them, the true innovation εt is an ARCH-type heteroskedastic martingale difference

sequence relative to the past and is generated as

εt = ηt

√
1 + 1

2
ε2
t−1, ηt ∼ IID N (0, 1).

DGP A is an autoregression of order one, so et is the true innovation εt and thus is serially

uncorrelated. DGP B is an autoregression of order 2, so et is an infinite linear distributed

lag on the true error εt, and thus is serially correlated of infinite order. DGP C is a bilinear

process such that yt is a weak white noise (Granger and Andersen, 1978). In DGP B and

DGP C the true state vector is wider than the one used in the Markov chain approximation

(L = 1). In addition, we investigate the situation when α = .8 and the data are generated

by

DGP D : yt = .8yt−1 + εt,

where εt is described above. To construct standard errors we use the HAC variance estimator

of Newey and West (1987). The sample size T equals 30, and sometimes 60 and 120. The

results are contained in Tables I and II.

We analyze the rejection frequencies obtained from 5, 000 experiments, for symmetric

two-sided (”α 6= 0”) and lower-tail (”α < 0”) and upper-tail (”α > 0”) one-sides t-tests

for the null α = 0, and similarly for the null α = .8. The MCB/LB critical values are

computed from 500 replications of the MCB/LB algorithm. The first bootstrap observation

is drawn randomly from the sample. For the MCB, we partition Ψ so that the observations

are approximately evenly allocated across bins: Ψk =
[
ψk−1, ψk

)
, with ψ0 = y(1), ψk =

1
2

(
y([kT/I]) + y([kT/I]+1)

)
, k = 1, . . . , I − 1, ψI = y(T ) + 1 (lines ”MCB–I”). For the LB, we

use the Epanechnikov resampling kernel (we also tried uniform and normal kernels as well,

without noticeable changes in the results) with a regressor-specific bandwidth (a uniform

bandwidth tends to worsen the results) set so that exactly n nearest neighbors are within

the band (lines ”LB–n”). The smoothing parameters are such that yield empirical sizes

closest to nominal ones for two-sided alternatives. For reference, we also show rejection

frequencies based on the asymptotic approximation (line ”ASY”).
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Both MCB and LB yield comparable rejection probabilities that dominate asymptotic

approximation for two-sided alternatives. The degree of precision falls, not dramatically

though, when the true state vector differs from the one used. Interestingly, the LB performs

slightly better for two-sided but slightly worse for one-sided tests than the MCB. Thus,

in some situations a crude histogram may be preferable to a smooth resampling kernel.

Note the persistent overrejection of upper-tail tests when the AR parameter is large, and

this property does not seem to vanish with larger sample sizes. This may be caused by

imprecise estimation of asymptotic variance during pivotization, the problem noticed by

many researches (see, for instance, Kilian, 1999).

4. Application to US GNP

In this section we analyze the extended Nelson–Plosser US real per capita GNP yearly

data from 1909 to 1988. The variable yt is a first difference of natural logarithms of GNP and

has 79 observations. Empirical studies of US GNP usually use threshold and smooth tran-

sition autoregressions, as well as Markov switching models (see Potter, 1995, for a review).

Our purpose is not to search for the ”true” or ”best” model, but rather to demonstrate the

application of the MCB in a simple model when the data are possibly generated by a com-

plicated nonlinear mechanism. To this end, we choose a class of quadratic autoregressions.

From all autoregressions that are quadratic in the first three lags of yt, the Akaike

Information Criterion favors the model

yt = α0 + α1yt−1 + α3yt−3 + α23yt−2yt−3 + et.

The point estimates with the Newey–West standard errors are:

α̂0 =0.022
(0.009)

, α̂1 =0.325
(0.135)

, α̂3 =−0.278
(0.109)

, α̂23 =2.69.
(1.69)

The t-statistics for α̂1, α̂3 and α̂23 are 2.41, −2.55 and 1.59, respectively; the Wald statistic

for joint significance of the three coefficients has the value of 14.48. The first two t-statistics

and the Wald statistic exceed in absolute value even 1% asymptotic critical values. These

results are likely to be regarded as an evidence of predictability of GNP by a person who

relies on asymptotic inference with its tendency to overreject. However, the MCB with the

parameter I equal to 7, 8, 9, gives the following 5% bootstrap critical values: 2.44, 2.50,

2.71 for α̂1, 4.45, 4.50, 4.44 for α̂3, 4.11, 4.20, 4.15 for α̂23, and 40.47, 41.19, 40.49 for the

Wald statistic. In contrast to asymptotics, the MCB inference says that there is little, if

any, predictability of GNP within the chosen class of models.
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Table I. Actual rejection rates, nominal size 5%, DGPs A–C, α = 0, T = 30

Inference
DGP A DGP B DGP C

method
α 6= 0 α < 0 α > 0 α 6= 0 α < 0 α > 0 α 6= 0 α < 0 α > 0

MCB–7 5.7 11.8 10.1 9.1 16.0 11.7 6.8 15.6 12.0

MCB–9 5.5 11.2 9.4 9.4 15.1 11.5 7.5 13.2 12.3

LB–4 5.8 13.0 11.2 8.3 15.1 12.2 6.5 14.2 13.7

LB–6 4.6 12.9 12.7 7.5 16.9 13.8 6.0 15.6 13.3

ASY 14.9 13.4 8.7 21.6 18.9 10.8 19.6 16.3 11.3

Table II. Actual rejection rates, nominal size 5%, DGP D, α = .8, various T

Inference
T = 30 T = 60 T = 120

method
α 6= .8 α < .8 α > .8 α 6= .8 α < .8 α > .8 α 6= .8 α < .8 α > .8

I = 8 I = 10 I = 18

MCB–I 6.1 7.8 12.9 5.1 6.8 15.9 5.2 7.0 14.7

n = 5 n = 6 n = 7

LB–n 5.9 7.5 13.6 5.4 7.9 15.9 5.0 7.5 16.7

ASY 18.9 25.2 1.4 13.9 19.1 2.5 9.8 13.2 3.3
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