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Abstract

This paper introduces a two—factor model of leading and coincident economic indicators. The
common leading factor is assumed to Granger—cause the common coincident factor. This
property is used to estimate the two common factors simultaneously and hence more
efficiently. Two models of the latent leading and coincident factors are studied: a model with
linear dynamics and a model with Markov—switching dynamics introduced through the
leading factor intercept term. The first model encompasses the comovements between the
individual time series. The second model, moreover, takes care of possible asymmetries
between the business cycle regimes.
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1 Introduction

In the modern macroeconomic literature many efforts are devoted to identi-
fying a hypothetical coincident economic indicator which represents a general
economic activity and allows to trace the evolution of the business cycle. It is
designed to serve as a reference time series to judge about the state of the affairs
in the economy. The most prominent examples of the one-factor models with the
linear dynamics is Stock and Watson (1988), while with the Markov-switching
dynamics these are Chauvet (1998), Kim and Yoo (1995).

With respect to this common coincident indicator one can then define the
leading and lagging macroeconomic variables. The former of these series are
especially important since they permit to predict the changes in the state of the
economy before they have occurred.

Normally, however, the leading series are not aggregated into a common
leading factor. The evolution of the common coincident factor is conditioned on
each of them individually, either directly through a VAR system of the common
coincident factor and individual leading observed time series as in Stock and
Watson (1988), Chauvet and Potter (2000) or via the time-varying transition
probabilities which depend on the individual leading variables as in Kim and
Yoo (1995).

This paper introduces a two-factor model where one of the latent factors is
postulated as a common leading indicator, while the second factor is taken to be
the common coincident indicator. There assumed to exist a one-way Granger
causality coming from the former common factor to the latter one. The common
leading and coincident factors are estimated from a set of the observed time
series which is split into a subset of leading and a subset of coincident variables.

First, we consider a linear model with leading and coincident factor following
an AR process. Next, we add a regime-switching dynamics to take care of the
possible asymmetries between the recession and expansion phases of the business
cycle captured by both common latent factors.

The linear specification of the two-factor model is presented in the section
two, while section three contains a description of the model with nonlinear
dynamics. In the section four we apply our models to the artificial data in order
to see how well these models reflect the true data-generating process. Section
five concludes the paper. All the tables and graphs are put into the Appendix
following the list of references.

2 Linear model

We consider a set of the observed time series, some of which may be defined as
leading while the rest of them are treated as the coincident series. The common
dynamics of the time series belonging to each of these groups are underlined
by a common factor: leading corresponding to the first group and coincident
corresponding to the second group. The idiosyncratic dynamics of each time
series in particular are captured by one specific factor per each observed time



series. Therefore the model can be written as follows:

Ayt = FAft + Ut (1)

where Ay, = (Ayry | Ath)/ is the n x 1 vector of the observed time series
in the first differences; Af, = (Afr: | Afey) is the 2 x 1 vector of the latent
common factors in the first differences; u; = (ur: | uCt)/ is the n x 1 vector
of the latent specific factors; I' is the n x 2 factor loadings matrix linking the
observed series with the common factors.

The dynamics of the latent common factors can be described in terms of a
VAR model:

Afy =+ O(L)Afoey + & 2)

where p is the 2 x 1 vector of the constant intercepts; ®(L) is the sequence of
p (p = max{pr,pc}, where p, is the order of the AR polynomial of the leading
factor, and p¢ is the order of the AR polynomial of the coincident factor) 2 x 2
lag polynomial matrices; e; is the 2 x 1 vector of the serially and mutually
uncorrelated common factor disturbances:
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We assume that the leading factor Granger-causes the coincident factor but
not vice versa. This assumption means that the matrices ®; (i = 1,...,p) are
diagonal or lower diagonal for all . For simplicity we suppose that the causality
from the leading to the coincident factor is transmitted only at one lag, say 7.
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The idiosyncratic factors are by definition mutually independent and are
modelled as the AR processes:

up = W(L)ug—q +ny 3)

where ¥(L) is the sequence of ¢ (¢ = max{q,...,¢n}, where g; is the order
of the AR polynomial of the i — th idiosyncratic factor) n x n diagonal lag
polynomial matrices and 7, is the n x 1 vector of the mutually and serially
uncorrelated Gaussian shocks:
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To estimate this model we express it in a state-space form:



Measurement equation:

Ay, = A, (4)

Transition equation:

By=a+CB_1+uv (5)

where 3, = (fi|Jus) is the state vector containing stacked on top of each
other vector of common factors and the vector of specific factors; v; is the
vector of the common and idiosyncratic factors’ disturbances with mean zero
and variance-covariance matrix @Q; « is the vector of intercepts.
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where v, is the ny, x 1 vector of the leading factor loadings; O,,x,, is n X m

matrix of zeros; i,, is the first row of the m x m identity matrix, and r =

max{pr, T}
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where ®L is the r x r matrix:
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where ¢, is the 1 x p;, row vector of the AR coefficients of the leading factor,
I,, is the n x n identity matrix, and o,, is the m x 1 vector of zeros.
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The matrices ¥, ..., U™ have the same structure as €.
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where ¢ is the 1 X r vector of zeros with ¢, 7 at the 7 — th position.
The unknown parameters and the latent factors may be estimated using
Kalman filter recursions. To save space we will not present them here, referring
the reader, for instance, to Hamilton (1994) who gives very clear and systematic
explanation of the Kalman filter methodology.

3 Nonlinear model

It was observed by many authors, among them by Diebold and Rudebusch
(1996) that the model of the business cycle would be incomplete if it would not



take into account both the comovement of various macroeconomic variables and
the asymmetries between the phases of the cycle. The linear model presented in
the previous section incorporates the phenomenon of the simultaneous changes
in the levels of different individual time series. However, it lacks a mechanism
which would reflect the qualitatively different behavior of these series during
recessions and expansions. One of the ways to introduce this mechanism in our
model is to add to it the regime-switching dynamics.

The Markov-switching dynamics is introduced through the leading factor
intercept:

Afy = p(se) + ®(L)Afi 1 + & (6)

where p(sy) = (pp(se),...,0)".

st is the unobserved regime variable. In the two-regime (expansion-recession)
case it takes two values: 0 or 1. Depending on the regime, the leading factor
intercept assumes different values: low in recessions and high in expansions.
Thus, the common factors grow faster during the upswings and slower (or even
have negative growth rate) during the downswings of the economy.

The changes in the regimes are governed by the first-order Markov chain
process, which is summarized by the transition probabilities matrix:

51 =0 5,1 =1
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where p;; = prob(s; = jlsi—1 = 1).
The rest of the equations of the model remains unchanged. The state-space
representation of the nonlinear two-factor model may be written as:

Measurement equation:

Ay, = Aﬁt (7)

Transition equation:

By = a(st) + OBy + v (8)

where a(s¢) = (u(s¢), ..., 0)".

It is worthwhile to notice that, since it is the dynamics of the common lead-
ing factor which include the state-dependent intercept in the current period, the
conditional regime probabilities predicting the occurrence of recessions or ex-
pansions of the coincident factor are simply the conditional regime probabilities



computed for the leading factor shifted forward for 7 periods. Thus, the con-
ditional regime probabilities estimated using the above model provide us with
the 7-periods ahead forecast of the coincident factor regimes.

All the other system matrices are as in the linear model. Thus, we have a
model expressed in the state-space form and having Markov-switching dynamics.
Again, we will not reproduce here all the relevant recursions which are necessary
to estimate the parameters and the unobserved state vector. On the estimation
of the common factor models with Markov switching one can read in Kim (1994)
or Kim and Nelson (1999).

4 Artificial examples

For the linear case we have generated two common latent factors and five indi-
vidual observable series. The first two observed time series are leading, while
the three remaining are the coincident. Both the common factors (in fact, their
first differences, not levels) and the idiosyncratic components are modelled as
the stationary AR(1) processes. The coincident factor is positively affected by
the leading factor at the lag 7 = 3. The true parameters of the DGP are pre-
sented in the column two of the Table 1 of the Appendix. The length of all these
series is 540 observations, which is comparable to the length of an ordinary Post
World War IT monthly time series for the US economy.

To identify the model, we set the factor loadings of the first observable
variable in each subset - leading and coincident - equal to unity. Thus, we
estimate only three of five factor loadings: one for the leading factor and two
for the coincident factor. The model is estimated by the maximum likelihood.
The estimated parameters together with the standard errors and the p-values
are reproduced in the Table 1. The mere observation of the true and estimated
parameters’ values shows that the latter are sufficiently close to the former
suggesting that the proposed model estimates the parameters generated process
accurately enough.

Figure 1 compares the true and estimated leading and coincident factors in
levels. To obtain the time series in levels we consecutively sum up their first
differences setting the first observation equal to zero. Figure 1 display very high
degree of similarity of the simulated and estimated common factors, especially
in the case of the latent leading factor.

In the case of the Markov-switching dynamics the length of the series is also
540. The first two observable time series are leading, meanwhile the last three
series are coincident. The coincident factor is again correlated to the leading
factor with a lag of three periods. The same identifying normalization - by
setting the factor loadings of the first observed time series in each group of the
variables - is used. The parameters of the true DGP are presented in the second
column of Table 2 of the Appendix. The estimates replicate the true parameters
with a sufficiently high degree of precision.

The true and estimated common factors are shown on the Figure 2. Again,
as in the case of the linear model, the estimated common factors series are very



similar to the simulated common factors.

Figure 3 displays the filtered and smoothed conditional probabilities of the
economy being in the recession, that is, in the low growth rate regime. These
are compared with the true low regime which is depicted in the lower panels of
the figure. Ones correspond to the downswing in the simulated economy, while
the zeros stand for the upswings. The estimated model captures the recession
dates pretty well. However, the smoothed recession probabilities sometimes
miss the recessions when those have a very short duration. Thus, the smoothed
probabilities turn out to be a more conservative dating tool than the filtered
probabilities.

5 Summary

In this paper we have introduced a common dynamic factor model with two
factors: leading and coincident. Each of them represents the common dynamics
of a corresponding subset of the observed time series which are classified as
being leading or coincident with respect to some hypothetical ”"state of the
economy”. The common leading factor Granger-causes the coincident factor,
thus allowing to use the former in the predictions of the future values of the
latter. This permits to improve the forecasting of the coincident factor because
of the additional information coming from the leading variables.

We consider two models: a model with the linear dynamics and a model with
the regime switching. The second model allows to take care of the asymmetries
which may characterize different phases of the business cycle and therefore is
more complete from the standpoint of the Burns and Mitchell’s definition of the
business cycle as interpreted by Diebold and Rudebusch (1996).

Both models are illustrated on two artificial examples, which show a high
enough fitting ability of these models when they correspond to the true data-
generating process.
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6 Appendix

Table 1. True and estimated parameters of the linear two-factor model

| Parameter | True | Estimated | St. error | p-value |

71 1 - - -
Yo 0.9 0.91 0.03 0.0
73 1 B B .
Ya 2 1.99 0.03 0.0
s 1.7 1.70 0.02 0.0
Pr 0.8 0.80 0.03 0.0
Pc 0.7 0.68 0.02 0.0
bcrs 0.5 0.53 0.04 0.0
(8 -0.3 -0.30 0.06 0.0
Py -0.7 -0.67 0.04 0.0
P -0.5 -0.54 0.04 0.0
Uy -0.2 -0.19 0.06 0.0
Vs -0.8 -0.77 0.03 0.0
o2 0.25 0.24 0.02 0.0
o3 0.36 0.38 0.03 0.0
o3 0.16 0.16 0.01 0.0
o3 0.49 0.50 0.05 0.0
o2 0.81 0.79 0.06 0.0
o2 0.25 0.26 0.03 0.0
o2, 0.36 0.31 0.03 0.0




Table 2. True and estimated parameters of the nonlinear two-factor model

| Parameter | True | Estimated | St. error | p-value |

P11 0.95 0.94 0.01 0.0
D22 0.87 0.82 0.04 0.0
11 0.4 0.41 0.03 0.0
1o -0.6 -0.66 0.05 0.0
71 1 - - -
Y2 0.9 0.90 0.01 0.0
3 1 - - B
V4 2 2.01 0.01 0.0
Vs 1.7 1.70 0.01 0.0
Pr 0.8 0.79 0.02 0.0
e 0.7 0.75 0.02 0.0
oL 0.5 0.43 0.02 0.0
Uy -0.3 -0.35 0.05 0.0
Py -0.7 -0.67 0.04 0.0
P3 -0.5 -0.50 0.05 0.0
Py -0.2 -0.30 0.06 0.0
Vs -0.8 -0.79 0.03 0.0
o? 0.25 0.24 0.02 0.0
o3 0.36 0.36 0.03 0.0
o3 0.16 0.17 0.01 0.0
o3 0.49 0.44 0.04 0.0
o2 0.81 0.84 0.06 0.0
o2 0.16 0.15 0.02 0.0
o2, 0.36 0.34 0.03 0.0




Linear model
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Figure 1: True and estimated common factors
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Nonlinear model
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70 40
600 350
300
500-|
250
400
200-]
300
150
200
100
100
50-|
0 Ay 0
— CF.MS —  LF.MS
i CFE_MS —-— LFE_MS
-100 - -50 -
25 111 197 283 369 455 24 108 192 276 360 444 528

Figure 2: True and estimated common factors
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Nonlinear model

Filtered recession probabilities Smoothed recession probabilities
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Figure 3: True low regime vs. filtered and smoothed recession probabilities
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