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Abstract

Motivated by finance applications, the objective of this paper is to assess the performance of
several important methods for univariate density estimation focusing on the robustness of the
methods to heavy tailed target densities. We consider four approaches: a fixed bandwidth
kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator
of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone. We conclude
that the logspline and adaptive kernel methods are superior for fitting heavy tailed densities.
Evaluation of the convergence rates of the SNP estimator for the family of Student−t
densities reveals poor performance, measured by Hellinger error. In contrast, the logspline
estimator exhibits good convergence independent of the tail behavior of the target density.
These findings are confirmed in a small Monte−Carlo experiment.
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1. Introduction

The primary objective of this paper is to assess the performance of several univariate
density estimators focusing on target densities with heavy tails. Motivated by finance
applications, it is particularly important to find methods that perform well for heavy-
tailed densities. We consider four approaches: a fixed bandwidth kernel estimator of
Sheather and Jones (1991), the adaptive bandwidth kernel estimator of Silverman
(1986), the Hermite Series (SNP) method of Gallant and Nychka (1987), and the
logspline approach of Kooperberg and Stone (1991, 1992). Primarily, we focus on the
simples case of univariate density estimation with i.i.d. observations. In future work
we hope to consider extensions to dependent data.

We argue that the logspline and adaptive kernel methods are superior to the other
methods for target densities with heavy tails. In particular, the performance of the
SNP estimator relative to the logspline estimator becomes significantly worse as the
tail of the density becomes heavier. For algebraically tailed densities like the Student-
t family the Hellinger error of the logspline estimator with parametric dimension
p decreases exponentially in p independent of tail heaviness. On the other hand,
the Hellinger error of the SNP estimator decreases algebraically, like p−ν/2, where ν
denotes the degrees of freedom of the t-distribution and reflects tail heaviness. These
findings are confirmed in a small Monte-Carlo experiment designed to compare the
four candidate estimators.

2. The Methods

Given a sample {X1, X2, . . . , Xn}, the classical kernel density estimator with Gaussian
kernel has the form

f̂FK(x) =
1

nh

n∑
i=1

φ
(
x − Xi

h

)
, (1)

where φ denotes the standard Gaussian density, and a fixed bandwidth h controls the
degree of smoothing. In selecting h, we use the two-stage direct plug-in bandwidth
selection method of Sheather and Jones (1991), which has been shown to perform
quite well for many density types by Park and Turlach (1992) and Wand and Jones
(1995).

The adaptive kernel density estimator of Silverman (1986) is defined as

f̂AK(x) =
1

n

n∑
i=1

1

hλi
φ

(
x− Xi

hλi

)
, (2)

where λi is a local bandwidth factor which makes the bandwidth λih to narrower near
modes and wider in the tails. Based on the pilot estimate by fixed kernel method,

f̃ (x), λi is determined as λi = f̃(Xi)/g
−α

, where log g = n−1 ∑
log f̃ (Xi) with α =

1



1/2. The bandwidth of the pilot estimate is determined by Silverman’s (1986) rule-of-
thumb, h = 0.9An−1/5 where A = min{standard deviation, interquartile range}/1.34.

The Gallant and Nychka (1987) SNP approach is a truncated Hermite series esti-
mator which is spanned as

f̂SNP (x, θ) =

[
K∑

i=0

θiwi(x)

]2

+ ε0φ(x), θ = (θ0, . . . , θK),
K∑

i=0

θ2
i + ε0 = 1, (3)

where wi(x) is a normalized Hermite polynomial multiplied by the squared root of
standard normal density, φ(x) is the standard normal density, and ε0 is a (small)
positive number. Estimation is by quasi-maximum likelihood:

θ̂ = argmaxθ,µ,σ

1

n

n∑
j=1

log
{
1

σ
f̂SNP

[
Xj − µ

σ
, θ

]}
, (4)

where µ and σ correspond to location and scale. The truncation point is chosen
as either K = n1/5 or according to the AIC or BIC model selection criterion. The
parametric dimension is p = K + 3, due to inclusion of µ, σ, and the θ0 term.

The logspline method of Kooperberg and Stone (1991, 1992) models a log-density
function as a cubic spline:

f̂LS(x, θ) = exp

{ p∑
i=1

θiBi(x)− c(θ)

}
, x ∈ R, (5)

where c(θ) is a normalization factor, and the functions {Bi(x)} denote the standard
cubic B-splines. The coefficients θ are estimated by maximum likelihood; knot selec-
tion determining the choice of the B-spline basis is based on the BIC criterion.

3. SNP Convergence Rates for Heavy-Tailed Densities

In this section we consider the change of the SNP (Hermite) approximation error as
the number of parameters grows for the family of Student-t densities and derive the
rate of convergence of the SNP approximation, as a function of the dimension of SNP
model and the degrees of freedom, ν, of the t-density.

3.1 SNP coefficients and Hellinger error
Under certain regularity conditions, a density f can be represented as an infinite sum
of orthonormal Hermite polynomials

f(x, θ) =

[ ∞∑
i=0

θiwi(x)

]2

, θ = (θ0, θ1, . . . . . .),
∞∑
i=0

θ2
i = 1. (6)

Let TK(x, λ) be a partial sum of normalized Hermite polynomials
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√
TK(x, λ) =

K∑
i=0

λiwi(x), (7)

where λi are arbitrary. The Hellinger error in approximating f(x) by TK(x, λ) is

H(f, TK) =
∫ ∞

−∞
(
√

f(x) −
√

TK(x, λ))
2dx. (8)

The coefficients, θi, minimizing Hellinger error can be determined by calculating

θi =
∫ ∞

−∞

√
f(x, θ) wi(x)dx. (9)

Using the orthogonality of the wi we have

H(f, TK) = 1 +
K∑

i=0

(λi − θi)
2 −

K∑
i=0

θ2
i . (10)

Thus, H(f, TK) is minimized over the λi’s by choosing λi = θi : i = 1, . . . , K. Having
chosen the λi in this way we have

H(f, TK) =
∞∑

i=K+1

θ2
i , (11)

so ε0 in (3) may be interpreted as the Hellinger error of the SNP estimator with the
coefficient determined as in (9).

3.2 Evaluating the approximation error of the SNP estimator.
Let p = K + 3 be the number of parameters of the SNP approximation. We have
computed θp up to p = 200 using (9) for several densities with varying tail behavior:
Student-t distributions with degrees of freedom ν = 1, 2, 3, 5, 11, and a bimodal
mixture of normal densities.1 In Figure 1, we plot for each of the densities, the
logarithm of |θp| as a function of p on log scale. The plotted curves are asymptotically
linear for the Student-t densities, but curved downward for the bimodal density.
Moreover, as the degrees of freedom ν decreases, the plotted slope becomes flatter,
indicating that the rate of approximation error improvement measured by Hellinger
distance becomes slower as the tail of the t-density becomes heavier.

The linearity observation in Figure 1 suggests that for algebraic tailed densities
that we have the relation,

θp = Ap−α. (12)

Supposing (12) holds, consider approximating the sum H(f, TK) =
∑∞

i=K+1 θ2
i by the

integral h(p) =
∫ ∞
p θ2(v)dv. For (12) we have,

1A mixture of normals such that 1
2N [−1, 0.52] + 1

2N [1, 0.52].
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h(p) =
∫ ∞

p
θ2(v)dv = A2

∫ ∞

p
v−2αdv = A2(2α − 1)p−(2α−1). (13)

The value for α corresponds to the slope of the Student-t lines in Figure 1. Based
on observations for each of the curves with different degrees of freedom, ν, we esti-
mated α for the range of large p by least squares regression. Since the number of
observations is limited at large p, estimation is done for several different ranges of p.
See Table 1.4 of Takada (2001) for further details. The estimated α increase exhibit-
ing a regular pattern as ν increases; α ≈ 0.75, 1.00, 1.25, 3.25±2σ̂ for ν = 1, 2, 3, 5, 11,
respectively, which relation is summarized as

α ≈ (ν + 2)/4, (14)

over the range of ν studied.
Based on (14), we conclude that Hellinger error decreases like,

h(p) ∼ p−ν/2, (15)

if p = nγ is assumed, the Hellinger rate of convergence becomes h ∼ n−νγ/2. Recently,
Coppejans and Gallant (2000) have shown that for p = nγ the best Hellinger error rate
for the SNP density estimator is h ∼ n−kγ/2, where k is determined by the conditions
in the following lemma.

Lemma (Fenton and Gallant, 1996b) Let f be a density such that f(x) = g2(x)e−x2/2+
ε0φ(x). If g is k-times differentiable with g(j) ∈ L2(e

−x2/2) for j = 0, 1, . . . , k, then
the Hermite coefficients of g satisfy

∑∞
i=p θ2

i = o(p−k).

This result seems to suggest that provided f is sufficiently smooth, as determined by
the order of the differentiability, k, the rate of convergence of the SNP approximation
is good. While the differentiability of g in the foregoing lemma may be considered
quite innocuous, the requirement that that g(j) ∈ L2(e

−x2/2), turns out to be surpris-
ingly restrictive for the class of heavy tailed f .

Recall that g(j) ∈ L2(e
−x2/2) iff

∫∞
−∞(g(j)(x))2 e−x2/2dx < ∞. For the family of

Student-t densities one can verify by straightforward computations that this condition
fails for k > ν/2 for even ν and for k > (ν − 1)/2 for odd ν. This is easily seen by
computing limx→∞ g(j)(x) and noting that the integral diverges unless the limit tends
to zero. For example, for t(2) we have lim g(j)(x) = ∞ for j = 2, 3, . . ., so our
observation from Figure 2 that Hellinger error declines like p−ν/2, is in perfect accord
with the Lemma. For t(3), limx→∞ g(2)(x) =

√
3

π
and the limit diverges for j > 2, hence

our conclusion from (15) that Hellinger error declines like p−3/2 for t(3) is slightly more
optimistic than the o(p−1) conclusion of the Lemma. This pattern is sustained for
larger ν showing that the failure of the L2 condition is a critical determinant of the
performance of the SNP estimator. We note that since our evaluation for whether
limx→∞ g(j)(x) → ∞ for the Student-t family depends only on the tail behavior of
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target densities, the foregoing conclusions may be extended to the general class of
densities with algebraic tails.

In this section, we have numerically derived a Hellinger rate of convergence that
depends on the degree of freedom, ν as in equation (15). If we approximate k as
k ∼ ν/2 for both even and odd ν,

∑∞
i=p θ2

i = o(p−k) in Lemma of Fenton and Gallant

becomes
∑∞

i=p θ2
i = o(p−ν/2) which is consistent with (15) given the relation (11).

Using the connection just established, it is suggested that the convergence of the
SNP estimator is highly sensitive to the tail behavior of the target density, with poor
performance at heavy tailed densities like the Student-t with low degrees of freedom.

4. Logspline Convergence Rates for Heavy-Tailed Densities

To contrast the SNP results in the previous section with the behavior of the
logspline estimator we have computed the Hellinger error of the p dimensional logspline
estimator based on artificial observations at equally spaced quantiles of the target
density. Modifying the logspline routines of Kooperberg and Stone (1991, 1992),
we replace the summation in (5) by integration so that the true density can be ap-
proximated, and the effect of knot placement on the rate of convergence is kept to a
minimum. The numerically derived Hellinger error of the logspline method in approx-
imating the true t(ν) densities is found to decrease faster than p−7, and suggesting

an exponential law of the form e−αpβ̃
, with parameters independent of tail behavior.

For algebraic tailed densities like the Student-t family, this represents a considerable
gain over the SNP method.

Figure 2 illustrates our comparison for the case of the t(3) density. The solid
line is the Hellinger error for the SNP method in approximating true t(3) density
as a function of the number of parameters p as developed in Section 3. The dotted
line is the counterpart for the logspline method. The open and filled circles indicate
the Monte Carlo simulation results in the next section for the Hellinger error of the
logspline method and the SNP method, respectively.

It is seen that the Hellinger approximation error of the logspline method decreases
significantly faster than that of the SNP method, and the rate is consistent with the
Monte Carlo simulation results.

5. Monte Carlo Simulation Study

This section compares the performance of our four density estimators in fitting heavy-
tailed densities in a small Monte Carlo study. In addition to the normal density, t(3)
and t(1) densities are chosen to see the effect of tail behavior. The lognormal density
is included as different type of heavy tail. All the densities are rescaled so that 99.9%
of the mass is included in the range of [−3, 3]. We evaluate the performance by the
Hellinger error defined as
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HM (f̂ , f) =
∫ M

−M
(
√

f̂(x)−
√

f(x))2dx. (16)

The Hellinger criterion accentuates the error in the tails. We set M = 3.
The source code used for the Monte-Carlo study for the SNP estimator is that of

Fenton and Gallant (1996a), for the logspline method that of Kooperberg and Stone
(1991, 1992). The adaptive kernel estimator is based on Silverman (1986). The direct
plug-in fixed kernel method is coded by Wand and Jones (1995). In the Monte Carlo,
the default settings are used for all the algorithms. The logspline program includes
knot deletion procedure. The numbers of parameters p for the SNP and logspline
estimators are determined to minimize the BIC criterion.2

Table I summarizes the Hellinger performance for each of the densities studied.
The sample size is fixed at 500; the error statistics are the average of 500 replications.
The errors of the logspline and adaptive kernel methods are quite similar for all the
densities. Those of the SNP and fixed kernel methods increase as the tails become
heavier. The performance ranking for heavy tailed densities is 1) logspline, 2) adap-
tive kernel, 3) fixed kernel, and 4) SNP. In particular, the performance of the SNP
estimator relative to that of the logspline estimator becomes significantly worse as
the tail of the density becomes heavier.

To assess the qualitative performance in fitting heavy-tailed densities, the t(3)
density is estimated using each of the four methods for one realization of a random
sample, and the results are illustrated in Figure 3. The dotted lines indicate the
true t(3) density while the solid lines denote the estimates. The data range of the
particular sample used in Figure 3 is [−3.35, 1.23] in the rescaled range where [−3, 3]
includes 99.9% of the mass. In this particular example, the estimates of right tail
diverges for three methods except the SNP since there is no data beyond x > 1.23.
It is interesting that the SNP method keeps coming back to the true value with
large oscillations where there is no data. Concerning the left tails, the SNP estimate
exhibits spurious oscillations, which may be attributed to the effect of the higher
order terms in the Hermite expansion. The fixed kernel estimate is also problematic
showing a mode in left tail.

6. Empirical Example

In Figure 4 we compare density estimates for the daily change of S&P500 index.
The daily price change is ∆p = log pt − log pt−1. In this figure we observe the same
pattern of differences in the tail shape of the estimates exhibited in the previous
figure, suggesting that the lobes in the tails of the fixed kernel and SNP estimates
are likely to be artifacts of the fitting method rather than real features of the data.

2The upper bound of the Hermite polynomial order K is set as K = n1/2 to avoid problems of
non-convergence of the algorithm.
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This observation is relevant to the ongoing dispute over the existence of side lobes
in the tails of densities of asset price changes. Based on SNP density estimation
of daily pound/dollar exchange rate data from 1974 to 1983, Gallant, Hsieh, and
Tauchen (1991) concluded that side lobes existed in the error density of their ARCH
specification. Engle and Gonzalez-Rivera (1991) reported similar lobes in the dis-
tribution of the standardized residuals from a GARCH(1,1) model. They suggested
that the detected side lobes reflect the residual non-linearity which could not be ex-
plained by the ARCH/GARCH formulation. In contrast, studies by Bollerslev (1987)
and Baillie and Bollerslev (1989) analyzing data on the British pound for 1980-1985,
found little evidence against GARCH(1,1) with t-distributed errors. Bollerslev, Chou,
and Kroner (1992) suggested that tail oscillations were unduly influenced by a few
outliers rather than a feature of the entire sample period. This conclusion seems
broadly consistent with the findings reported above.

Note that the price change series are time dependent. Density estimates of weakly
dependent data are likely to have larger asymptotic variance than those of i.i.d. data,
and thus we need to be more cautious. See, for example, Pagan and Ullah (1999,
p43-49).

7. Conclusion

It is clear that for heavy-tailed densities like Student-t, the rate of convergence of
the SNP estimator is remarkably slow compared to logspline or even conventional
kernel methods. Since financial data are often characterized as heavy-tailed, it seems
prudent to consider the logspline methods or adaptive kernel method for financial
applications. Extensions and further exploration of these methods for dependent
data seem to be promising lines of future research.
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Figure 1: The coefficients of Hermite polynomial terms of the SNP estimates as a
function of the number of parameters in approximating true densities.
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Figure 2: The Hellinger error as a function of the number of parameters.
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Points labeled as “MC” indicate the Hellinger error results from the Monte Carlo study in Table I.
Open circles represent the Monte-Carlo performance of the logspline estimator, filled circles the
performance of the SNP estimator. Lines labeled as “approx.” plot the change in the Hellinger
error as p grows in approximating true t(3) density.
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Table I: Simulation Results for Densities with Heavy Tails
(Sample size 500, average of 500 simulated samples.)

Normal t(3) t(1) Lognormal
Method mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)

F.Kernel 0.0035 (0.0017) 0.0112 (0.0026) 0.1344 (0.0061) 0.0237 (0.0032)
Hellinger A.Kernel 0.0035 (0.0016) 0.0049 (0.0020) 0.0247 (0.0038) 0.0121 (0.0022)

SNP 0.0010 (0.0010) 0.0111 (0.0069) 0.4242 (0.2946) 0.0383 (0.0168)
Logspline 0.0029 (0.0016) 0.0045 (0.0026) 0.0087 (0.0038) 0.0052 (0.0025)

p SNP 3.0 (0.0) 10.9 (4.2) 25.3 (1.5) 22.9 (2.9)
Logspline 4.2 (0.6) 6.2 (0.5) 9.4 (0.8) 5.8 (1.0)

Figure 3: Estimates of t(3) log densities.
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Dotted lines indicate the true t(3) density; solid lines denote the estimates. Note that they are
rescaled so that 99.9% of the mass is included in the range of [−3, 3]. The data range for this
particular sample is [−3.35, 1.23].

Figure 4: Four density estimates for daily changes in S&P500 index.
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