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Abstract. Necessary conditions for dominant strategy implementability on
a restricted type space are identified for a finite set of alternatives. For any
one-person mechanism obtained by fixing the other individuals’ types, the
geometry of the partition of the type space into subsets that are allocated the
same alternative is analyzed using difference set polyhedra. Situations are
identified in which it is necessary for all cycle lengths in the corresponding
allocation graph to be zero, which is shown to be equivalent to the vertices
of the difference sets restricted to normalized type vectors coinciding. For an
arbitrary type space, it is also shown that any one-person dominant strategy
implementable allocation function (i) can be extended to the unrestricted
domain and (ii) that it is the solution to an affine maximization problem.
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1. Introduction

A mechanism consists of an allocation function and a payment function that
specify the social alternative that is chosen and the payments (which could
be negative) to be made by each individual as a function of their types.
We consider an environment in which the number of alternatives is finite
and utilities are quasilinear. An individual’s type is described by a vector
whose components are his valuations of each of the alternatives. Thus, for
each alternative, this person’s utility is his valuation minus his payment.
Types are private information, and so incentives must be provided in order to
induce truthful type revelation. A mechanism is dominant strategy incentive
compatible if for each type in the domain of the mechanism (the type space),
each person can do no better by falsely reporting his type. An allocation
rule is dominant strategy implementable if there is a payment function such
that the resulting mechanism is dominant strategy incentive compatible. As
is well known, such a mechanism can be characterized by the one-person
mechanisms that are obtained by considering any individual and fixing the
types of the other individuals. Henceforth, we restrict attention to such a
one-person mechanism.

In this article, we show that a necessary condition for an allocation func-
tion to be dominant strategy implementable is for all cycles in the correspond-
ing allocation graph (defined below) to have zero length when the type space
and the allocation function exhibit certain structural features. In particular,
all cycle lengths must be zero if the type space is unrestricted. Moreover, all
of these cycles have zero length if and only the vertices of particular cones
coincide. These cones essentially characterize how the type space is parti-
tioned into types that are assigned the same alternative. For an arbitrary
type space, we also show (i) that any dominant strategy implementable one-
person allocation function can be extended to the unrestricted type space
while preserving dominant strategy implementability and (ii) that this ex-
tension can be used to construct a piecewise affine function of the type vec-
tor that generates the allocation function by, for each type, maximizing this
function over the set of alternatives. The parameters of this piecewise affine
function are the average lengths of the arcs that terminate at each node in
the allocation graph corresponding to the extended allocation function.

The Rockafellar–Rochet Theorem (Rockafellar, 1970; Rochet, 1987) pro-
vides necessary and sufficient conditions for an allocation function to be dom-
inant strategy implementable for an arbitrary type space. For our purposes,
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the most convenient statement of the Rockafellar–Rochet Theorem is due to
Gui et al. (2004) (see also Börgers, 2015; Vohra, 2011). The allocation graph
associated with an allocation function is the complete directed graph whose
nodes are the set of alternatives and for which the length of the directed arc
from alternative ai to alternative aj is the infimum of the change in valua-
tion for the individual being considered of having aj instead of ai over all all
types for which the allocation function chooses aj.

1 A (directed) cycle in the
allocation graph with k arcs is a k-cycle. The Rockafellar–Rochet Theorem
says that an allocation function is dominant strategy implementable if and
only if all k-cycles in the corresponding allocation graph have nonnegative
length for every k ≥ 2.

Verification of these cycle conditions is impractical when there are many
alternatives. Beginning with Bikhchandani et al. (2006), a literature has
emerged that has identified a number of restricted multidimensional type
spaces for which the nonnegativity of all 2-cycles is sufficient for all cycles
in the allocation graph to be nonnegative and, hence, for dominant strategy
implementability.2 Contributions to this literature include Archer and Klein-
berg (2014), Ashlagi et al. (2010), Berger et al. (2009), Carbajal and Müller
(2015), Kushnir and Galichon (2016), Mishra et al. (2014), and Saks and Yu
(2005). For example, the nonnegativity of the 2-cycles has been shown to be
sufficient for dominant strategy implementability if the type space is a finite-
dimensional convex set (Saks and Yu, 2005) or if it is a multidimensional
single-peaked type space (Mishra et al., 2014).

Cuff et al. (2012) show that if the type space is the product of intervals of
the real line and a mild regularity condition is satisfied, then (i) a necessary
and sufficient condition for dominant strategy implementability is that all
2-cycles in the allocation graph have zero length and (ii) the zero 2-cycle
condition implies that all cycles in this graph have zero length.3 Hence, when
their assumptions are satisfied, an allocation function is dominant strategy
implementable if and only if all cycles in the allocation graph have zero
length. Our results show that the necessity of zero length cycles applies

1In our formal analysis, the alternatives are a1, . . . , am and the node for ai in the
allocation graph is identified with the integer i.

2The 2-cycle nonnegativity condition is an analogue for multidimensional type spaces
of the monotonicity condition used by Myerson (1981) in his characterization of an optimal
auction for a single object.

3Their regularity assumption is satisfied if the type space is open (e.g., if the type space
is unrestricted).

3



under much weaker conditions than those identified by Cuff et al. (2012).
In our one-person framework, a dominant strategy implementable alloca-

tion function satisfies the revenue equivalence property if any two payment
functions that implement the allocation function only differ by a constant.
For an arbitrary type space, Heydenreich et al. (2009) show that revenue
equivalence is satisfied by a dominant strategy implementable allocation
function if and only if the length of the shortest path from any node in
the allocation graph to any other node is the negative of the shortest path in
the reverse direction. Hence, when there is revenue equivalence, any pair of
nodes lies on a zero length cycle, but this cycle may contain more than two
arcs. When all 2-cycles have zero length, the shortest path from one node
to a second is the direct path between them. Thus, revenue equivalence is
satisfied when all 2-cycles have zero length.

An allocation function partitions the type space into sets, each of which
consists of the types that are assigned a particular alternative. As shown
by Gui et al. (2004) (see also Vohra, 2011), this partition can be identified
from a set of polyhedra, one for each alternative, called difference sets. With
m alternatives, these difference sets cover R

m and each pair of these sets
has no interior points in common. The facets of the ith difference set are
characterized by the lengths in the allocation graph of all the directed arcs
that terminate at the node for the ith alternative. The allocation function
assigns the ith alternative to any type in the interior of the ith difference set
and does not choose this alternative if the type is not in the the ith difference
set. Cuff et al. (2012) exploit the geometric structure of the restrictions of
the difference sets to the type space in order to establish their results.

We also proceed by investigating the geometric structure of the partition
of the type space induced by the allocation function. Restricted to the sub-
space of Rm orthogonal to the vector of all 1’s, each of the difference sets
is a pointed cone. The vertices of these normalized difference sets play a
fundamental role in our analysis. Moreover, these vertices can be simply
expressed using the arc lengths in the allocation graph. Specifically, we show
that the jth component of the vertex of the normalized difference set for the
ith alternative is the average length of the directed arcs in the allocation
graph that terminate at the ith node minus the length of the arc from node
j to node i. For a dominant strategy implementable allocation function, we
prove that the vertices of the normalized difference sets coincide if and only
if all 2-cycles in the allocation graph have zero length if and only if all cy-
cles in this graph have zero length. We also show that these conditions are
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necessary for dominant strategy implementability if either (i) the type space
has an interior and at least one of these vertices is the projection of a type in
the interior of the type space to the subspace orthogonal to the all 1’s vector
or (ii) there are only two alternatives and the type space is convex.

We show that any one-person allocation function on a restricted type
space that is dominant strategy implementable can be extended to a domi-
nant strategy implementable allocation function on all of Rm. This extension
is used to show that the original allocation function is the solution to an affine
maximization problem. That is, it is an affine maximizer. Specifically, for
any type in the domain, for each alternative, we first compute the differ-
ence between the valuation for that alternative and the average value of the
lengths of all arcs that terminate at its node in the allocation graph cor-
responding to the extended allocation function. The alternative chosen for
this type maximizes the value of this difference. In other words, for each
type, the alternative chosen maximizes a piecewise affine function of the
type vector over the set of alternatives. For an n-person allocation function,
Roberts’ Theorem (Roberts, 1979) shows that a necessary condition for a
surjective allocation function to be dominant strategy implementable when
there are at least three alternatives and the type space is unrestricted is that
the chosen alternative maximizes a semipositive weighted sum of the individ-
ual valuations and a term that is alternative specific. In contrast, our affine
maximization result for a one-person mechanism holds for any type space.

In the first of our two results about the necessity of all cycles being of zero
length and in our analysis of universal domain extensions and affine maxi-
mizers, it is not assumed that the type space is convex. As a consequence,
this article contributes to the relatively small literature on dominant strategy
implementability with nonconvex type spaces (see, e.g., Carbajal and Müller,
2015; Kushnir and Galichon, 2016; Mishra et al., 2014).

The rest of this article is organized as follows. In Section 2, we present the
model and state the Rockafellar–Rochet Theorem. In Section 3, we introduce
difference sets and consider how they are related to the partition of the type
space into regions that are allocated the same alternative. In Section 4, we
establish some useful results about cycle lengths in the allocation graph. In
Section 5, we show that all 2-cycles having zero length is equivalent to the
vertices of the normalized difference sets coinciding. In Section 6, we identify
sufficient conditions for the necessity of all 2-cycles being of zero length. In
Section 7, we consider the prevalence of zero length cycles when not all
cycles have zero length. In Section 8, we show how to extend the allocation
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function to an unrestricted type space. In Section 9, we demonstrate that
the allocation function is an affine maximizer. In Section 10, we illustrate
our analysis with two economic applications. Finally, in Section 11, we offer
some concluding remarks.

2. The Rockafellar–Rochet Theorem

The set of alternatives is A = {a1, . . . , am} for some fixed m ≥ 2. Let
M = {1, . . . ,m}. An alternative ai is uniquely identified by the integer i
that indexes it. It is sometimes convenient to refer to an alternative by its
index rather than as being a member of A.

An individual’s type is given by his valuations of each of the alterna-
tives. Because we are considering dominant strategy incentive compati-
bility, without loss of generality, we can restrict attention to a one-person
mechanism in which the types of all but one individual are fixed. Let
v = (v1, . . . , vm) = (v(a1), . . . , v(am)) be the type of this individual, where
vi = v(ai) denotes his valuation of the ith alternative. The set of possible
types, the type space, is V , where |V | ≥ 2. If V = R

m, the type space is
unrestricted.

An individual’s type is private information, so the mechanism designer
must choose an alternative and the payment to be charged (which could be
negative) based on the individual’s reported type. The reported type could
differ from his true type. A mechanism is a pair (g, π), where g : V → A is
an allocation function and π : V → R is a payment function that respectively
assign an alternative and a payment to each reported type. Utility is quasi-
linear in the payment. The utility when the true type is v and the reported
type is ṽ is v(g(ṽ))− π(ṽ).4

The mechanism designer chooses a mechanism for which the individual
always has an incentive to report his true type. An allocation function g is
dominant strategy implementable if there exists a payment function π such
that

v(g(v))− π(v) ≥ v(g(ṽ))− π(ṽ), ∀v, ṽ ∈ V. (1)

If π is such a payment function, then π is said to implement g. A mechanism
(g, π) for which g is implementable with the payment function π is dominant

strategy incentive compatible.

4In this notation, the true type v is used to value the alternative g(ṽ) obtained with
the reported type ṽ.
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Dominant strategy implementability implies that if some alternatives are
never chosen, then for any v, ṽ ∈ V that only differ in the valuations of
these alternatives, v(g(v)) − π(v) = v(g(ṽ)) − π(ṽ). Because there are no
utility consequences if different alternative and payments are chosen for v
and ṽ, henceforth, we suppose that g(v) = g(ṽ) and π(v) = π(ṽ) in such
circumstances. With this assumption, the allocation and payment functions
only depend on the valuations of the alternatives that are ever chosen. We can
therefore reinterpret A as being the subset of alternatives that are chosen for
some report of their valuations. With this interpretation of A, g is surjective;
that is, g(V ) = A.

Let
Ri = {v ∈ V |g(v) = ai}, ∀i ∈ M,

be the set of types that are allocated ai by the allocation function g. These
sets partition the set of types. We investigate the geometric structure of this
partition and its implications when g is dominant strategy implementable.5

By construction, Ri 6= ∅ for all i ∈ M .
For an arbitrary type space, Rochet (1987) has identified a necessary and

sufficient condition for an allocation function to be dominant strategy imple-
mentable. Rochet’s characterization is closely related to the characterization
by Rockafellar (1970) of convex functions in terms of their subgradients, so
this result is known as the Rockafellar–Rochet Theorem. For our purposes,
the most convenient statement of the Rockafellar–Rochet Theorem is pro-
vided by the interpretation of this theorem in terms of an allocation graph
due to Gui et al. (2004) (see also Vohra, 2011).

The allocation graph Γg is the complete directed graph that has the set
M as the nodes and lij as the length of the directed arc from node i to node
j, where

lij = inf
v∈Rj

[vj − vi] . (2)

In this graph, the length (which could be negative) of the directed arc from
i to j is the infimum of the change in the valuation of having alternative
aj instead of alternative ai over the set of all types for which the allocation
function chooses aj. The length of a loop at node i is lii = 0. The length

5Vidali (2009) analyzes the geometric structure of the analogous partition of the type
space for a multi-unit auction in which an individual is allocated either 0 or 1 unit of each
of m indivisible objects, with the value of his allocation equal to the sum of the valuations
of the objects he receives.
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lij is finite for all i, j ∈ M when g is dominant strategy implementable (see
Heydenreich et al., 2009, p. 310).

For any pair of nodes i and j in Γg, a path from i to j is a sequence
of directed arcs (i1, i2), . . . , (ik−1, ik) for which i1 = i and ik = j. For any
positive integer k, a k-cycle is a path with k arcs from i to i. The length
of a path or k-cycle is the sum of the lengths of the arcs that comprise it.
Changing the starting node without altering the order of the nodes in a k-
cycle does not affect its length. As a consequence, if k = 2, the two 2-cycles
have the same length, so it is not necessary to specify the order in which
the nodes appear in a 2-cycle. The allocation function g satisfies the k-cycle
nonnegativity condition if all k-cycles in Γg have nonnegative length and it
satisfies the zero k-cycle condition if all k-cycles in Γg have zero length.

The Rockafellar–Rochet Theorem (Rockafellar, 1970; Rochet, 1987) shows
that for any type space V , a necessary and sufficient condition for an alloca-
tion function g to be dominant strategy implementable is that for any integer
k ≥ 2, the k-cycle nonnegativity condition is satisfied.

Theorem 1. The following conditions for the allocation function g : V → A
are equivalent:

(i) g is dominant strategy implementable.

(ii) For every integer k ≥ 2, the k-cycle nonnegativity condition is satisfied.

3. Difference Sets

As we have seen, the sets {Ri} partition of the set of types V , with Ri

consisting of all of the types that are assigned the alternative ai by the
allocation function g. The structure of this partition can be identified using
what Vohra (2011) calls difference sets. These are polyhedra defined on the
universal type space R

m. Before defining these sets, we first introduce some
further notation. For each i, j ∈ M , let ei be the ith coordinate vector and
eij = ei − ej. For any set S ⊆ R

m, let intS be its interior and relintS be its
relative interior.

For all distinct i, j ∈ M , the pairwise difference set for (ai, aj) is

H ij = {v ∈ R
m|eij · v ≥ lji} (3)
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and its boundary is

Hij = {v ∈ R
m|eij · v = lji}. (4)

The pairwise difference set H ij is a closed half-space. A type v is in H ij if
the change in the valuation from obtaining ai instead of aj is at least as large
as the length of the arc from node j to node i in Γg. Recall that this length
is the infimum of the change in the valuation from obtaining aj instead of ai
over all types in V for which g assigns aj. We let Hii = H ii = R

m.
For all i ∈ M , the difference set for ai is

Pi =
m
⋂

j=1

H ij. (5)

By (3) and (4), Pi is characterized by the lengths of all directed arcs that
terminate at node i in the graph Γg. The significance of these difference sets
is provided by the following theorem, proofs of which may be found in Cuff
et al. (2012, Theorem 5) and Vohra (2011, p. 45).

Theorem 2. For the allocation function g : V → A, for any alternative

ai ∈ A:

(i) For any type v ∈ Ri, v ∈ Pi ∩ V .

(ii) If g satisfies the 2-cycle nonnegativity condition, then for any type v ∈
intPi ∩ V , v ∈ Ri.

If g is dominant strategy implementable, by Theorem 1, the 2-cycle non-
negativity condition is satisfied. When this is the case, Theorem 2 shows that
except for possibly on the boundary of Pi, the set of types in Pi ∩ V is Ri.
More precisely, any v ∈ V that is in intPi must be assigned the alternative
ai. Conversely, if g assigns ai to v, then v must be in Pi ∩ V . Thus, except
on their boundaries, the difference sets Pi, i ∈ M , completely identify how
alternatives are assigned to types.

Let 1 be the all 1’s vector and 1⊥ be the subspace of Rm that is orthogonal
to it. In other words, 1⊥ is the set of types whose valuations sum to zero.
If v ∈ Pi, then so is v + λ · 1 for any scalar λ. Thus, each difference set is
characterized by its restriction to 1⊥. For all i ∈ M , the normalized difference

set for ai is
P̂i = Pi ∩ 1⊥.
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Note that P̂i is the orthogonal projection of Pi onto 1⊥. Let

l̄i =
1

m

∑

j

lji, ∀i ∈ M, (6)

denote the average length of the arcs in Γg that terminate at node i.

For all m ≥ 2, the normalized difference set P̂i is a pointed cone. More-
over, its vertex pi is easily computed from the lengths of the directed arcs in
Γg that terminate at node i.

Theorem 3. For all i ∈ M , P̂i is a pointed cone with vertex pi whose jth
component is

pij = l̄i − lji, ∀j ∈ M. (7)

Proof. Because pi ∈ Hij for all j,

pii − pij = lji, ∀j ∈ M. (8)

Summing the equations, we obtain

npii −
∑

j∈M

pij =
∑

j∈M

lji. (9)

Because pi ∈ 1⊥,
∑

j∈M

pij = 0. (10)

Hence, (6), (9), and (10) imply that pii = l̄i. Substituting this expression into
(8), we obtain (7).

Thus, pij is the average length of the arcs in Γg that terminate at node i
minus the length of the arc that goes from node j to node i. Because lii = 0,
pii is simply l̄i. As we shall see, the m vertices of the normalized difference
sets {P̂i} can be used to characterize the allocation function g.

In determining the implications of dominant strategy implementability,
we also make use of the orthogonal projection of the type space V onto 1⊥.
This set is denoted by V̂ , what we call the projected type space. In general,
V̂ is not equal to V ∩ 1⊥. For example, if V = R

m
+ , then V̂ = 1⊥, whereas
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V ∩ 1⊥ = 0, where 0 = (0, . . . , 0). If, however, V = [−d, d]m for some d > 0,
then V̂ = V ∩ 1⊥.

Except for possibly on the boundaries of the difference sets, a dominant
strategy implementable allocation function g can be characterized by an al-
location function ĝ on V̂ . To define this function, for each v ∈ V̂ , choose any
scalar λv such that v + λv · 1 ∈ V and let ĝ : V̂ → A be defined by

ĝ(v) = g(v + λv · 1), ∀v ∈ V̂ . (11)

We refer to a vector of the form v + λ · 1 for some scalar λ as a translation

of v. It follows from the inequalities in (1) that ĝ is dominant strategy
implementable. If v and ṽ have the same orthogonal projection on V̂ , then
by Theorem 2, they are assigned the same alternative by g if they are not
on the boundary of any the difference sets {Pi}. When this is the case, the
value of ĝ(v) does not depend on the choice of λv. Thus, ĝ can be used to
characterize g except for possibly on the boundaries of the difference sets.
If it is in fact the case that g(v) = g(ṽ) whenever v and ṽ have the same
orthogonal projection on V̂ , then g can be completely recovered from ĝ on
all of V .

4. Some Cycle Length Lemmas

Cuff et al. (2012) assume that (i) V is the product of intervals of R and (ii)
that the interior of each difference set has a nonempty intersection with the
type space.6 With this structure on V , they show that the zero 2-cycle condi-
tion is necessary and sufficient for g to be dominant strategy implementable
and that the zero 2-cycle condition implies that all cycles in Γg have zero
length. In Section 6, we show that all cycles in Γg being of zero length is
necessary for the dominant strategy implementability of g using much weaker
restrictions on the type space than those identified by Cuff et al. (2012). In
this section, we present some results about the lengths of cycles in the graph
Γg that highlight the importance of the 2- and 3-cycles for understanding the
implications of dominant strategy implementability.

Consider any nonempty I ⊆ M . The allocation function g satisfies the
2-cycle nonnegativity condition on I if

lij + lji ≥ 0, ∀i, j ∈ I, (12)

6These assumptions are satisfied if V is the product of open intervals and, hence, are
satisfied if the type space is unrestricted.
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and it satisfies the 3-cycle nonnegativity condition on I if

lij + ljk + lki ≥ 0, ∀i, j, k ∈ I. (13)

If the inequality in (12) (resp. (13)) holds with equality, we have what we call
the zero 2-cycle condition (resp. zero 3-cycle condition) on I. If I = M , (12)
and (13) are the k-cycle nonnegativity conditions for k = 2, 3, respectively.

For any triple of nodes I in Γg, there are six 3-cycles. When g is dominant
strategy implementable, these six 3-cycles have zero length if and only the
2-cycles for each pair of nodes in I also have zero length.

Lemma 1. For any I = {i, j, k} ⊆ M , if the allocation function g : V → A is

dominant strategy implementable, then g satisfies the zero 2-cycle condition

on I if and only if it satisfies the zero 3-cycle condition on I.

Proof. By Theorem 1, g satisfies the 2-cycle and 3-cycle nonnegativity con-
ditions on I. Because addition is associative and commutative,

(lij + lji) + (ljk + lkj) + (lki + lik) = (lij + ljk + lki) + (lji + lki + lkj). (14)

If g satisfies the zero 2-cycle condition on {i, j, k}, then each of the three
bracketed terms on the LHS of (14) and, hence, their sum is 0. By the 3-
cycle nonnegativity condition on {i, j, k}, each of the two bracketed terms on
the RHS of (14) is nonnegative. Because their sum is 0, each of these terms
must in fact be 0. That is, g satisfies the zero 3-cycle condition on {i, j, k}.
An analogous argument can be used to establish the reverse implication.

The following result has been established by Cuff et al. (2012, Lemma 2).

Lemma 2. If the allocation function g : V → A satisfies the zero 2-cycle

condition and the 3-cycle nonnegativity condition, then it satisfies the zero

k-cycle condition for every integer k ≥ 2.

If g is dominant strategy implementable, we know that all cycles in Γg

have nonnegative length. Hence, an implication of Lemma 2 is that it is suf-
ficient to show that the zero 2-cycle condition holds in order to conclude that
all cycles in Γg have zero length when g is dominant strategy implementable.

The zero 3-cycle condition fails if there exists any 3-cycle that does not
have zero length. This does not imply that a non-zero length cycle can be
found that includes any particular node in Γg. However, Lemma 3 shows
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that every node must be part of some non-zero length cycle if the 2- and
3-cycle nonnegativity conditions hold when there exists a 3-cycle that does
not have zero length. In particular, this is the case if g is dominant strategy
implementable.

Lemma 3. If the allocation function g : V → A satisfies the 2- and 3-cycle

nonnegativity conditions but does not satisfy the zero 3-cycle condition, then

for any i ∈ M there must exist a 3-cycle in Γg that includes node i that has
positive length.

Proof. On the contrary, suppose that there exists an i such that for any
j, k 6= i we have

lij + ljk + lki = lji + lik + lkj = 0.7

Thus,
(lij + lji) + (lki + lik) + (ljk + lkj) = 0.

By the 2-cycle nonnegativity condition, each of the bracketed terms in this
sum must be nonnegative, and so in fact must be 0. Hence, the zero 2-cycle
condition is satisfied on {i, j, k}. But then by Lemma 1, the zero 3-cycle
condition is also satisfied on {i, j, k}. Because this is true for any j, k 6= i,
we thus have that the zero 3-cycle condition is satisfied, contradicting the
hypothesis that they are not.

5. Cycle Lengths, Vertices, and Difference Sets

We now investigate the implications for cycle lengths of the relative positions
of the boundaries of the pairwise difference sets and of the vertices of the
normalized difference sets. We begin with a result showing that the sign
of the length of a k-cycle depends on the relative positions of the pairwise
difference sets for each pair of nodes in this cycle.

Theorem 4. For any I = {i1, . . . ik−1, ik} ⊆ M , the length of the k-cycle
(i1, i2), . . . , (ik−1, ik), (ik, i1) is:

(i) zero if there exists a v ∈ ∩ij∈IHijij+1
.8

7Because the length of a 3-cycle only depends on the order of the nodes and not on its
initial node, if these equalities hold, then all 3-cycles for the nodes i, j, and k have zero
length.

8In any k-cycle, addition is modulo k.
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(ii) positive if there exists a v that is not in intH ijij+1
for any ij ∈ I and

that is not in H ijij+1
for some ij ∈ I.

Proof. The two parts of this theorem follow directly from (4) and (3), re-
spectively.

The first part of Theorem 4 shows that a k-cycle has zero length if there
is a type that is in the boundary of each of the pairwise difference sets for
each pair of nodes in the k-cycle. The second part shows that a k-cycle has
positive length if the first case does not apply and there is a type that is
not in the interior of any of these pairwise difference sets. When k = 2, if
Hij = Hji coincide (i.e., Pi and Pj share a facet in common), the first case
applies and, hence, the 2-cycles for nodes i and j have zero length. Note
that if Hij = Hji, then H ij ∪Hji = R

m. If, however, H ij ∪Hji 6= R
m (and,

therefore, Pi and Pj do not share a common facet), the second case applies
and, hence, the 2-cycles for nodes i and j have positive length.

For a dominant strategy implementable allocation function, we now show
that the zero 2-cycle condition is equivalent to (i) all of the vertices of the
normalized difference sets being equivalent and (ii) the existence of a vector
in 1⊥ that is on the boundary Hij of the pairwise difference set H ij for each
ordered pair of alternatives (ai, aj).

Theorem 5. If the allocation function g : V → A is dominant strategy im-

plementable, then the following conditions are equivalent:

(i) The vertices {pi} of the normalized difference sets coincide.

(ii) The simultaneous equations

eij · v = lji, ∀i, j ∈ M, (15)

and

1 · v = 0 (16)

have a solution.

(iii) g satisfies the zero 2-cycle condition.
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Proof. (i) ⇒ (ii). Let p be this common vertex. By the definitions of the
normalized difference sets {P̂i}, p solves (15) and (16).

(ii) ⇒ (i). By definition, a solution to (15) and (16) is a common vertex
of all m of the normalized difference sets {P̂i}.

(ii) ⇒ (iii). Consider any i 6= j. The two equations in (15) for i and j
imply that lij = −lji. Thus, the zero 2-cycle condition holds.

(iii) ⇒ (ii). The equations in (15) for which i = j are vacuous and so are
omitted for the rest of this proof. Without loss of generality, suppose that
i 6= 1 6= j. It follows from (8) and (10) in the proof of Theorem 3 that p1 is
the solution to the equations

e1j · v = lj1 and 1 · v = 0. (17)

Because eij = ei1 + e1j and ei1 = −e1i, we have

eij · p1 = ei 1 · p1 + e1 j · p1
= −e1 i · p1 + e1 j · p1
= −li1 + lj1,

where the last equality follows from (17). By assumption, g satisfies the zero
2-cycle condition, and so lj1 = −l1j. By Lemma 2, g also satisfies the zero
3-cycle condition and, therefore, lji = −li1 − l1j. Thus,

eij · p1 = −li1 + lj1 = −li1 − l1j = lji,

which shows that p1 is a solution to (15) and (16).

Example 1. For the three alternative case, the situation in which the con-
ditions in Theorem 5 are satisfied is illustrated in Figure 1.9 The common
vertex of the three normalized difference sets P̂1, P̂2, and P̂3 is p. Because
the allocation function g is surjective, each of these three sets must have a
nonempty intersection with the projected type space V̂ and each type in V̂
must be in at least one of these three projected difference sets. The vertex p
need not be in V̂ . If V̂ is not convex, it is possible that P̂i∩V̂ is not connected
for some values of i. In the diagram, this is the case for i = 1. Because p is
a common vertex of P̂1, P̂2, and P̂3, it must be on the boundaries of every
pairwise difference set, which by Theorem 4 implies that all 3-cycles have

9In our diagrams, the orientation is chosen so that 1⊥ lies flat in the page.
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V̂

p

P̂1

P̂2

P̂3

Figure 1: Satisfaction of the Conditions in Theorem 5.

zero length. It then follows from Lemma 1 that all 2-cycles have zero length
as well, which by Theorem 4 is only possible if each projected difference set
has a facet in common with each of the other two of these sets.

Example 2. Figure 2 provides an illustration of the failure of the conditions
in Theorem 5 when there are three alternatives. In the diagram, the vertex
p2 of P̂2 has been chosen to lie outside of V̂ and to differ from the vertices
p1 of P̂1 and p3 of P̂3. For each i, j ∈ M , it follows from the definition of
Hij in (4) that Hij ∩ 1⊥ is a line when m = 3. On this line, vi − vj = lji.
Thus, the line Hij ∩1⊥ is parallel to the line Hji ∩1⊥. In the diagram, these

observations are reflected by the fact that any normalized difference set P̂i

has a facet with the same slope as one of the facets of P̂j for j 6= i. Because

P̂1 and P̂3 have no type in common, the length of a 2-cycle for nodes 1 and 3
is positive. Because the allocation function g is surjective, each of the other
two pairs of normalized difference sets must share a common facet, and so
the lengths of the 2-cycles for the node pairs {1, 2} and {2, 3} are zero.

Let F̂13 and F̂31 denote the parallel facets of P̂1 and P̂3, respectively. F̂13

lies on H13∩1⊥ and F̂31 lies on H31∩1⊥. The value of v1−v3 (and, hence, of
v3− v1) is constant on lines that are parallel to these two lines. For any type
v that is a translation of a type in intP̂1∩ V̂ , we know that g(v) = a1 and for
any type v that is a translation of a type that is not in P̂1∩ V̂ , we know that
g(v) 6= a1. Hence, because the value of l31 is chosen to be the infimum of
v1 − v3 for all types v for which g(v) = a1, it follows that the value of v1 − v3
is decreasing as we move to the right in Figure 2 and that the vertex p1 is
the rightmost boundary point of P̂1 ∩ V̂ . Analogous reasoning shows that p3
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P̂3
V̂

p1
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p3

F̂13

F̂31

Figure 2: Failure of the Conditions in Theorem 5.

is the uppermost boundary point of P̂3 ∩ V̂ .10

In our discussion of Example 2, we have seen that it is possible that some
of the 2-cycles do not have zero length. In this three alternative example,
only 2-cycles involving one particular node have a non-zero length. These
observations are a consequence of a more general feature of dominant strategy
implementable allocation functions that is discussed in Section 7.

6. The Necessity of Zero Length Cycles

In Example 1, all cycles in the allocation graph have zero length. In this sec-
tion, we identify circumstances in which dominant strategy implementability
requires this to be the case.

Suppose that the allocation function g satisfies the 2-cycle nonnegativity
condition, which is the case if g is dominant strategy implementable. Also
suppose that the type space V has an interior. Consider any type v in the
interior of V . The following lemma shows that that if v is in the relative
interior of the facet of the difference set for alternative ai that is identified
by the boundary of the pairwise difference set for (ai, aj), then the lengths
of the 2-cycles in Γg for nodes i and j are zero.

Lemma 4. For all i, j ∈ M , if the allocation function g : V → A satisfies the

2-cycle nonnegativity condition, the type space V has a nonempty interior,

10The significance of the dashed line in Figure 2 is discussed in Sections 8 and 9.
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and there exists a v ∈ Pi∩intV for which v ∈ relint(Hij∩Pi), then lij+lji = 0.

Proof. By assumption, lij + lji ≥ 0. Contrary to the lemma, suppose that
lij + lji = δ > 0. Let B be an open ball containing v for which (i) B ⊂ intV
and (ii) B∗ = B ∩ relint(Hij ∩ Pi) is open and of co-dimension 1. We first
show that there must be a type v∗ ∈ B∗ that is not contained in Pk for any
k 6= i. We then show that there is a type in V that is not in any of the Pk,
which contradicts the surjectivity of g.

The requirement that B∗ ⊂ int(Hij ∩ Pi) implies that for all v∗ ∈ B∗,

eij · v∗ = lji (18)

and
eik · v∗ > lki, ∀k 6= i.

It then follows that B∗ ∩ Pj = ∅ because for any v∗ ∈ B∗,

eji · v∗ = −eij · v∗ = −lji = lij − δ < lij.

For every k 6= i, j, we know that intPk∩intPi = ∅. Hence, if Pk∩B∗ 6= ∅,
then Pk ∩B∗ lies in the boundary of Pk. Consequently, Pk ∩B∗ cannot lie in
a facet of Pk because that would imply that Pk has a facet parallel to Hij,
which only happens when k = j. It then follows that for each k 6= i, Pk ∩B∗

can have at most co-dimension 2. Thus, B∗ − ∪k 6=i(Pk ∩B∗) 6= ∅.
Consider any v∗ ∈ B∗ −∪k 6=i(Pk ∩B∗). The function d(λ) = v∗ + λeji for

λ ≥ 0 defines a ray with origin v∗ in the direction eji. For any λ > 0,

eij · d(λ) = eij · v∗ + λeij · eji = lji − 2λ < lji,

where the second equality follows from (18). But by (3), in order to have
d(λ) ∈ Pi, it must be the case that eij ·d(λ) ≥ lji. Hence, d(λ) /∈ Pi. Because
each of the Pk is closed, v∗ ∈ intV , and v∗ /∈ Pk for any k 6= i, there must be
a value λ′ > 0 sufficiently close to 0 for which d(λ′) ∈ V such that d(λ′) /∈ Pk

for any k 6= i. Thus, d(λ′) ∈ V , but d(λ′) /∈ Pk for any k, which contradicts
the surjectivity of g. Hence, lij + lji = 0.

We now use Lemma 4 to prove the following theorem.

Theorem 6. If the allocation function g : V → A is dominant strategy im-

plementable, the type space V has a nonempty interior, and there exists an

i ∈ M such that the vertex pi of the normalized difference set P̂i is the pro-

jection of some type vi ∈ intV onto 1⊥, then
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(i) the vertices {pj} of the normalized difference sets are identical.

(ii) g satisfies the zero k-cycle condition for all k ≥ 2.

Proof. We first prove (i). Because g is dominant strategy implementable,
by Theorem 5, we know that the vertices {pj} of the normalized difference
sets are identical if and only g satisfies the zero 2-cycle condition. Moreover,
by Lemma 1, the zero 2-cycle condition holds if and only if the zero 3-cycle
condition does as well.

Suppose that the {pj} are not all identical. Then some zero 3-cycle con-
dition fails. Consider any i ∈ M . By Lemma 3, there exist j, k 6= i such that
some 3-cycle using i, j, and k as nodes has positive length. Without loss of
generality, suppose that

lki + lij + ljk > 0.

Because pi is the projection onto 1⊥ of some type vi ∈ intV , there exist
vj, vk ∈ Pi ∩ intV for which vj ∈ relint(Hij ∩ Pi) and vk ∈ relint(Hik ∩ Pi).
By Theorem 1, g satisfies the 2-cycle nonnegativity condition. Therefore, the
assumptions of Lemma 4 are satisfied, and so lij + lji = 0 and lik + lki = 0.
Hence,

ljk > lji + lik.

Choose ǫ > 0 so that 2ǫ < ljk − (lji + lik) and consider the type

v̂ = pi + ǫek − ǫej.

We know from Theorem 3 that pij = l̄i − lji for all j ∈ M . Because lii = 0, a
simple computation shows that

eik · v̂ = lki − ǫ < lki.

Hence, v̂ /∈ P̂i.
We also have that

ejk · v̂ = (−eij + eik) · v̂
= −lji − ǫ+ lki − ǫ

= −lji − lki − 2ǫ

≤ lkj − 2ǫ

< lkj,
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where the third equality follows from the fact that lik = −lki and the first
inequality follows from the fact that 3-cycles have nonnegative length. Hence,
v̂ /∈ P̂j.

Similarly,

ekj · v̂ = (eki + eij) · v̂
= lik + ǫ+ lji + ǫ

= −lki − lij + 2ǫ

< ljk,

where the third equality follows from the fact that both lij = −lji and lik =
−lki and the inequality follows from the fact that 3-cycles have nonnegative
length. Hence, v̂ /∈ P̂k.

For any h 6= i, j, k,

ehk · v̂ = (ehi + eik) · v̂
= lih + lki − ǫ

= −lhi − lik − ǫ

≤ lkh − ǫ

< lkh,

where the third equality follows from the fact that both lih = lhi and lik = −lki
and the first inequality follows from the fact that 3-cycles have nonnegative
length. Hence, v̂ /∈ P̂h for any h 6= i, j, k.

By Theorem 2, we have thus shown that v̂ /∈ V . However, by choosing ǫ
sufficiently small, v̂ ∈ V̂ , which is a contradiction.

Part (ii) of the theorem now follows immediately from Part (i), Lemma 2,
and Theorem 5.

Figure 1 can be used to provide some intuition for Theorem 6. For con-
creteness, consider the normalized difference set P̂1 for alternative a1. It
vertex is p1 = p. The upward sloping line emanating from p is the facet of P̂1

that is defined using the pairwise difference set for (a1, a2). This facet must
be parallel to the corresponding facet of P̂2. If these facets do not coincide,
because the interiors of P̂1 and P̂2 have an empty intersection, there must be
points near p that lie between these two facets. Any such point must be the
projection of a type in V that is not in any difference set and, hence, not
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V̂P̂1

P̂2

P̂3

Figure 3: Failure of the Conditions in Theorem 6.

assigned any alternative, which is inconsistent with the surjectivity of the al-
location function. Thus, P̂1 and P̂2 share a common boundary. Analogously,
P̂1 and P̂3 also share a common boundary. In order for P̂2 and P̂3 to be cones,
it then follows that p is a common vertex of these two normalized difference
sets, from which it follows that they share a common boundary. When a pair
of normalized difference sets share a common boundary, any 2-cycle for the
corresponding nodes in Γg has zero length. Thus, in Example 1, all 2-cycles
and, hence, all cycles have zero length.

In Theorem 6, it is not assumed that the type space is convex. Thus, this
theorem contributes to our understanding of the implications of dominant
strategy implementability in nonconvex environments, thereby complement-
ing the analyses of nonconvex type spaces by Carbajal and Müller (2015),
Kushnir and Galichon (2016), and Mishra et al. (2014).

The assumption in Theorem 6 that the type space has an interior cannot
be dispensed with, as the following example demonstrates.

Example 3. Suppose that there are three alternatives and that V = V̂ , as
illustrated in Figure 3. All types weakly to the left of p1 are assigned a1, all
types weakly to the right of p2 = p3 are assigned a3, and the types between
these vertices are assigned a2. While the length of a 2-cycle for nodes 1 and
2 and for nodes 2 and 3 are both zero, the length of a 2-cycle for nodes 1 and
3 is positive.

An essential feature of Example 3 is that there are more than two alterna-
tives. Theorem 7 shows that if there are only two alternatives and the type
space is convex, then it is necessary for a dominant strategy implementable
allocation function to satisfy the zero 2-cycle condition or, equivalently, for all
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of the vertices of the normalized difference sets to coincide. In this theorem,
the type space is not required to have an interior.

Theorem 7. If m = 2, the allocation function g : V → A is dominant

strategy implementable, and the type space V is convex, then

(i) the vertices {pj} of the normalized difference sets coincide.

(ii) g satisfies the zero 2-cycle condition.

Proof. Because g is surjective, V ∩ Pi 6= ∅, i = 1, 2. Hence, because V is
convex, if l12 + l21 > 0, there exist types in V that are in neither difference
set, which by Theorem 2 is not possible. Thus, (ii) holds. It then follows
that the two normalized difference set (which are rays) share a single point
in common, which establishes (i).11

As is the case when the assumptions of Theorem 6 hold, the failure of the
zero 2-cycle condition implies that some types are not assigned any alterna-
tive, thereby violating the surjectivity of the allocation function.

The assumptions of Theorem 7 are satisfied by a Vickrey (1961) auction
of a single indivisible good. For such an auction, there are two possible
outcomes: the individual is either awarded the good or he is not. The type
space is one-dimensional convex set because the value of not receiving the
good is 0 and the value of receiving the good can take on any value in an
interval of R.12

Theorem 7 does not generalize to more than two alternatives even when
the type space has an interior. When there are three alternatives, this can
be shown by considering a variant of Example 2.

Example 4. If the type space V is convex, then so is the projected type space
V̂ . By an appropriate choice of V , it is possible to have the same normalized
difference sets as in Figure 2. In particular, it is possible for p1 and p3 to lie
in the boundary of V̂ and for p2 to lie outside V̂ . In this example, a 2-cycle
for nodes 1 and 3 has positive length.

11Part (ii) of this theorem has been established by Cuff et al. (2012, p. 384). We include
its short proof here because it provides the intuition for why this result is true.

12Vickrey auctions are discussed in more detail in Section 10.
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7. The Ubiquity of Zero Length 2-Cycles

In this section, we consider the prevalence of zero length 2-cycles when the
allocation function is dominant strategy implementable. In Examples 1, 2,
and 3, all of the 2-cycles have zero length except for at most one pair of
alternatives. As we shall see, this must be the case when the type space is
connected when, as in these examples, there are three alternatives. Regard-
less of the number of alternatives, provided that the type space is connected,
we show that there must be many zero length cycles.

The pairs of alternatives for which 2-cycle lengths are zero can be de-
scribed using a graph. Formally, for the allocation function g : V → A, the
zero 2-cycle graph is the graph Γ2

g with node set M that has an edge between
nodes i and j, denoted i ∼ j, if and only if lij + lji = 0.13

Following Vohra (2011, p. 63), the allocation graph Γg is said to be 2-

cycle connected if Γ2
g is connected. If Γg is 2-cycle connected, then for any

partition of the node set M of Γg into two non-empty sets I and J , there
must be an i ∈ I and a j ∈ J such that the 2-cycles for these nodes have
zero length. Because Γ2

g has m nodes, it must have at least m − 1 edges,
and therefore there must be at least m − 1 pairs {i, j} of distinct nodes in
M whose 2-cycles have zero length if Γg is 2-cycle connected. Thus, if Γg

is 2-cycle connected, because there are two 2-cycles for each pair of nodes,
there must be at least 2m−2 zero length cycles when Γg is 2-cycle connected.
Informally, zero length 2-cycles are ubiquitous.

If the assumptions of Theorem 6 are satisfied, then Γ2
g is a complete

graph and, hence, Γg is 2-cycle connected. The allocation graph is also 2-
cycle connected if the type space is connected when the allocation function
is dominant strategy implementable.14

Theorem 8. If the allocation function g : V → A is dominant strategy im-

plementable and the type space V is connected, then Γg is 2-cycle connected.

Proof. By identifying the set T in Theorem 4.3.4 in Vohra (2011) with the
type space V , the assumptions of Vohra’s theorem are satisfied. In the proof
of his theorem, Vohra shows that Γg is 2-cycle connected.

13A formally equivalent graph is used by Kushnir and Galichon (2016) to study the
sufficiency of the 2-cycle nonnegativity condition for dominant strategy implementability.

14Note that it is not assumed in Theorem 6 that V is connected.
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The assumptions of Theorem 8 are satisfied for Examples 1, 2, and 3. In
each of these examples, m = 3, and so there must be at least two pairs of
nodes for which the 2-cycles have zero length, which is indeed the case.

Vohra (2011, Lemma 4.3.3) shows that a dominant strategy implementable
allocation function satisfies the revenue equivalence property if the alloca-
tion graph is 2-cycle connected. As the following example demonstrates, the
converse does not hold. That is, revenue equivalence and dominant strategy
implementability do not imply that the allocation graph is 2-cycle connected.

Example 5. Let m = 3 and suppose that with the allocation function g,
l12 = l13 = l32 = 2 and l21 = l31 = l23 = −1. All cycles in Γg have nonnegative
length, so g is dominant strategy implementable. The shortest path from
node 1 to node 2 has length 2 and the shortest path in the reverse direction
has length −2. The shortest path from node 1 to node 3 has length 1 and
the shortest path in the reverse direction has length −1. The shortest path
from node 2 to node 3 has length −1 and the shortest path in the reverse
direction has length 1. In each case, the sum of the two lengths is 0, so
revenue equivalence is satisfied. However, as is readily verified, none of the
2-cycles has zero length.

8. Extending the Domain

The allocation function g+ : Rm → A is a universal domain extension of the
allocation function g : V → A if g+(v) = g(v) for all v ∈ V . In this sec-
tion, we show that any dominant strategy allocation function on a restricted
type space has a universal domain extension that is also dominant strategy
implementable.

Before turning to our formal analysis, we offer some intuition for the ex-
istence of a universal domain extension by reconsidering Examples 1, 2, and
3. In Figure 1, the union of the three normalized difference sets {P̂i} is all
of 1⊥ and, hence, the union of the the corresponding difference sets {Pi} is
all of Rm. As a consequence, the allocation function for this example has a
universal domain extension. For all i, j ∈ M , this extension assigns alterna-
tive ai to any v ∈ intPi, ai or aj to any v ∈ Pi ∩ Pj, and a1, a2, or a3 to
any v ∈ P1 ∩ P2 ∩ P3. In Figures 2 and 3, the union of the three normal-
ized difference sets {P̂i} is a strict subset of 1⊥. Therefore, the union of the
corresponding difference sets {Pi} does not cover Rm. Nevertheless, the allo-
cation functions for these examples also have a universal domain extension.
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In Figure 2, by moving the facets F̂13 and F̂31 so that they coincide with the
dashed line in the diagram, the resulting normalized difference sets cover 1⊥

and their intersections with the normalized type space V̂ are unchanged. In
Figure 3, if the vertex p1 is moved to the right so that it coincides with p2

and p3, the intersections of the interiors of the resulting normalized difference
sets with the normalized type space are unchanged. Using the corresponding
modified difference sets on all of Rm, the requisite extension can be con-
structed as in the first example. Note that the arc lengths that define the
difference sets that have been modified are not the lengths that define the
corresponding difference sets for the original type space. In each of these
cases, the constructed allocation function on the unrestricted type space is
dominant strategy implementable.

The inequalities (1) that define dominant strategy implementability imply
that the payments must be the same for any types that are allocated the
same alternative. Thus, a payment function π that implements the allocation
function g can be equivalently described in terms of a function ρg that assigns
a value to each node in the corresponding allocation graph Γg. Heydenreich
et al. (2009, Observation 1) have shown that π implements g if and only if
ρg is a node potential.

Formally, for the allocation function g : V → A, the function ρg : M → R

is a node potential if

ρg(j) ≤ ρg(i) + lij, ∀i, j ∈ M. (19)

That is, a node potential assigns a scalar to each node in the graph Γg in
such a way that (19) holds. The payment function π : V → R corresponds

to the node potential ρg if for all i ∈ M and all v ∈ V for which g(v) =
ai, π(v) = ρg(i). In other words, the payment required by the payment
function π for any type v ∈ V that the allocation function g assigns ai is the
value assigned to the ith node in Γg by the node potential ρg. Theorem 9
provides a formal statement of the Heydenreich et al. (2009) characterization
of dominant strategy incentive compatibility in terms of node potentials.

Theorem 9. For the allocation function g : V → A and payment function

π : V → R, (g, π) is dominant strategy incentive compatible if and only if π
corresponds to a node potential ρg : M → R.

Consider any dominant strategy implementable allocation function g and
let π be a payment function that implements it. By Theorem 9, π corresponds
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to some node potential ρg. Let

l+ij = ρg(j)− ρg(i), ∀i, j ∈ M. (20)

The value l+ij is the increment in the payment required if aj is chosen instead
of ai by the allocation function g using the payment function π corresponding
to the node potential ρg. The node potential allocation graph Γ+

g is defined
to be the complete directed graph with node set M for which the length of
the directed arc from node i to node j is l+ij .

It follows immediately from (20) that every cycle in Γ+
g has zero length.

Lemma 5. If ρg : M → R is a node potential for the dominant strategy

implementable allocation function g : V → A, then for every integer k ≥ 2,
any k-cycle in the node potential allocation graph Γ+

g has zero length.

Lemma 6 shows that the length of any arc in the allocation graph Γg is
at least as large as the length of the corresponding arc in the node potential
allocation graph Γ+

g and that these arc lengths coincide when an arc is part
of a zero length 2-cycle of Γg.

Lemma 6. If ρg : M → R is a node potential for the dominant strategy

implementable allocation function g : V → A, then for all i, j ∈ M ,

lij ≥ l+ij . (21)

and for all i, j ∈ M for which lij + lji = 0,

l+ij = lij. (22)

Proof. Because ρg is a node potential for g, (21) follows from (19) and (20).
Consider any i, j ∈ M for which lij + lji = 0. Because lij + lji = 0 and
l+ij + l+ji = 0, if lij > l+ij , we would have

0 = lij + lji > l+ij + l+ji = 0,

which is impossible. Hence, because (21) holds, (22) does as well.

For all i ∈ M , let P+
i be the pairwise difference set for ai defined as in

(5) but using the lengths {l+ij} instead of the lengths {lij} when defining the
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analogues of the pairwise difference sets in (3). Also let P̂+
i ⊆ 1⊥ be the

corresponding normalized difference set for ai. An implication of Lemma 6
is that for all i ∈ M , Pi ⊆ P+

i and P̂i ⊆ P̂+
i . In moving from Pi to P+

i ,
any facet of Pi that is defined using an alternative whose node forms a 2-
cycle of Γ2

g with node i is unchanged, whereas any facet of Pi that is defined
using an alternative whose node does not form a 2-cycle of Γ2

g with node i is
moved parallel so as to increase the size of this difference set. We use these
observations to prove that any dominant strategy implementable allocation
function has a universal domain extension that is also dominant strategy
implementable.

Theorem 10. If the allocation function g : V → A is dominant strategy

implementable, then g has a universal domain extension g+ : Rm → A that

is dominant strategy implementable.

Proof. Because g is dominant strategy implementable, by Theorem 9, there
exists a node potential ρg : M → R and a payment function π : V → A
corresponding to it that implements g. By Lemma 6, l+ij = lij and l+ji = lji
for any pair of nodes i and j for which i ∼ j in the 2-cycle graph Γ2

g. For any
pair of nodes i and j for which i 6∼ j, by (21), lij > l+ij and lji > l+ji. Hence,
by the definitions of Pi and P+

i ,

Pi ⊆ P+
i , ∀i ∈ M. (23)

We now show that
∪i∈MP+

i = R
m. (24)

On the contrary, suppose that there exists a v ∈ R
m for which v /∈ P+

i for
any i ∈ M . Using the lengths {l+ij} instead of the lengths {lij} in (3) and
(5), it then follows that for all i ∈ M , there exists an ij ∈ M such that

vi − vij < l+iji. (25)

Because the number of nodes is finite, there exists a k-cycle for some k ∈
{2, . . . ,M} in which each arc is the arc from i to ij for some i. Let E be the
set of the arcs in this cycle with the arc which starts at node i denoted by
iij. By (25),

0 =
∑

iij∈E

[vi − vij ] <
∑

iij∈E

l+iij . (26)
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By Lemma 5, every cycle in the complete graph Γ+
g has zero length, which

contradicts (26). Hence, (24) holds.
We now construct the allocation function g+ : Rm → A. For all v ∈ V ,

we let g+(v) = g(v) so that g+ is a universal domain extension of g. By
construction, intP+

i ∩ intP+
j = ∅ for all i, j ∈ M . For all i ∈ M , let

g+(v) = ai for any v ∈ intP+
i \ V . For any other v ∈ R

m, there exists a
maximal subset I ⊆ M for which v ∈ ∩I∈IP

+
i . For such a v, let g+(v) = ai

for some i ∈ I. By construction, the allocation function g+ satisfies the
conditions in Theorem 2 reinterpreted so as to apply to g+.

By Lemma 5, all cycles in Γ+
g have zero length. Hence, by Theorem 1, g+

is dominant strategy implementable.

An implication of Theorem 10 is that Γ+
g is the allocation graph for the

allocation function g+. Because all 2-cycles in this graph have zero length
and g+ is dominant strategy implementable, it follows from Theorem 5 that
the normalized difference sets {P̂+

i } have a common vertex, which we denote
by p+.

In Figure 1, p+ = p, in Figure 2, p+ = p2, and in Figure 3, p+ = p2 = p3.
In Example 6, we illustrate Theorem 10 with a three alternative example in
which p+ does not coincide with a vertex of any of the normalized difference
sets for g.

Example 6. The projected type space V̂ and the three normalized difference
sets P̂1, P̂2, and P̂3 are as illustrated in Figure 4. Note that V̂ is not con-
nected. Because l12 + l21 = 0, p+ must lie on the line through p1 and p2. It
must also lie on a line that is parallel to the upward sloping facet of P̂1 and
on a line that is parallel to the upward sloping facet of P̂2. The vertex p+

must also lie weakly to the right of p1 and weakly to the left of P̂3. Its exact
location on the line through p1 and p2 depends on which payment function
is used to implement g or, equivalently, what node potential is used.15 The
rays that originate at p+ are the facets that separate pairs of the normalized
difference sets {P̂+

i }.16

As we have noted, there is not a unique universal domain extension in
Example 6. We now show that a dominant strategy implementable allocation

15In this example, we have a failure of revenue equivalence. That is, there exist payment
functions π and π′ that both implement g for which there is no constant c such that
π(v) = π′(v) + c for all v ∈ V .

16To avoid clutter, we do not label these sets in the diagram. They can be inferred from
the fact that P̂i ⊆ P̂+

i
for all i ∈ M .
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p1p2

p3

p+

V̂

V̂

P̂1

P̂2

P̂3

Figure 4: Extending g to g+.

function g has a unique universal domain extension if the zero 2-cycle graph
Γ2
g is connected. This graph need not have any cycles, but as we now show,

if there are any, they must have zero length. This observation is used to help
prove our unique extension result.

Lemma 7. If the allocation function g : V → A is dominant strategy imple-

mentable, then any cycle of the zero 2-cycle graph Γ2
g has zero length.

Proof. By Lemma 6, for any i, j ∈ M for which i ∼ j in Γ2
g, l

+
ij = lij. Because

Γ+
g is complete and all of its cycles have zero length, it follows that any cycle

of Γ2
g must have zero length.

Theorem 11 demonstrates that connectedness of the zero 2-cycle graph is
sufficient for the uniqueness of a universal domain extension.17

Theorem 11. If the allocation function g : V → A is dominant strategy

implementable and the zero 2-cycle graph Γ2
g is connected, then g has a unique

universal domain extension g+ : Rm → A.

Proof. Consider any three nodes i, j, k ∈ M of Γ2
g for which i ∼ j and j ∼ k,

but i 6∼ k. By Lemma 7, the length of the path from node i to node k via
node j is the negative of the reverse path. Adding the arc from node k to
node i to the first path results in a cycle. Moreover, there is a unique arc
length l∗ki that results in this cycle having zero length. The reverse cycle only

17Recall that the allocation function satisfies the revenue equivalence property if the
zero 2-cycle graph is connected.
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has zero length if the arc from node i to node k has length −l∗ki. The graph
Γ2
g is connected, and so by assigning lengths in this way, we have uniquely

extended Γ2
g to a graph for which all three cycles exist and have zero length.

A simple induction argument shows that this way of assigning lengths to arcs
that are not in Γ2

g uniquely extends Γ2
g to a complete graph Γ∗

g all of whose
cycles have zero length. Lemmas 5 and 6 and Theorem 10 then imply that
Γ∗
g and Γ+

g coincide. Hence, there is a unique universal domain extension g+

of g.

9. Affine Maximizers

The universal domain extension whose existence was established in the pre-
ceding section is now used to show that any one-person allocation function
that is dominant strategy implementable is an affine maximizer. More pre-
cisely, there is a piecewise affine function of the type vector that generates
the allocation function by, for each type, maximizing this function over the
set of alternatives.

Consider any dominant strategy implementable allocation function g and
any universal domain extension g+ of it. By analogy with the definition of l̄i
in (6), let

l̄+i =
1

m

∑

j∈M

l+ji, ∀i ∈ M, (27)

be the average length of all the arcs in the allocation graph of g+ that ter-
minate at node i. These values are the parameters in the objective function
in the affine maximization problem.

This objective function is constructed as follows. For each type v in the
domain of the allocation function, the difference vi− l̄+i is computed for each
alternative ai. The requisite objective function assigns the maximum value
of these differences to v. Theorem 12 shows that the alternative chosen by
the allocation function g maximizes this function.

Theorem 12. If the allocation function g : V → A is dominant strategy

implementable, then

g(v) = ai for some i ∈ argmax
i∈M

{vi − l̄+i }, ∀v ∈ V, (28)

where {l̄+i } are the average lengths defined in (27) for the dominant strategy

implementable universal domain extension g+ : Rm → A of g.
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Proof. By Theorem 10, such a g+ exists. Because g is the restriction of g+

to V , it is sufficient to prove that

g+(v) = ai for some i ∈ argmax
i∈M

{vi − l̄+i }, ∀v ∈ R
m. (29)

Consider any v ∈ R
m. Suppose that i∗ ∈ argmaxi∈M{vi − l̄+i }. That is,

vi∗ − l̄+i∗ ≥ vj − l̄+j , ∀j ∈ M.

For any j 6= i∗, we thus have

ei∗j · v ≥ l̄+i∗ − l̄+j .

Expanding the RHS of this expression and using the fact that l+i∗i∗ = l+jj = 0
yields

ei∗j · v ≥ 1

m

[

l+(i∗+1)i∗ + · · ·+ l+(i∗−1)i∗

]

− 1

m

[

l+(j+1)j + · · ·+ l+(j−1)j

]

Because g+ satisfies the zero 2-cycle condition, it then follows that

ei∗j · v − l+ji∗ ≥
1

m

[

l+(i∗+1)i∗ + · · ·+ l+(j−1)i∗ + l+(j+1)i∗ + · · ·+ l+(i∗−1)i∗

]

− 1

m

[

l+(j+1)j + · · ·+ l+(i∗−1)j + l+(i∗+1)j + · · ·+ l+(j−1)j

]

− (m− 2)

m
l+ji∗ .

Using the zero 2-cycle condition in this inequality, we obtain

ei∗j · v−l+ji∗ ≥
1

m

[

l+(i∗+1)i∗ + · · ·+ l+(j−1)i∗ + l+(j+1)i∗ + · · ·+ l+(i∗−1)i∗

+ l+
j(j+1) + · · ·+ l+

j(i∗−1) + l+
j(i∗+1) + · · ·+ l+

j(j−1) + (m− 2)l+i∗j

]

.

In this inequality, the expression in square brackets consists of (m−2) 3-cycles
of the form {l+qi∗ , l+i∗j, l+jq}. Because g+ satisfies the zero 3-cycle condition, all
of these 3-cycle have zero length. Thus,

ei∗j · v − l+ji∗ ≥ 0, ∀j 6= i∗.

Therefore, v ∈ Pi∗ for any i∗ ∈ argmaxi∈M{vi − l̄+i }. Hence, by Theorem 2,
(29) holds.
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If the zero 2-cycle condition is satisfied, then the lengths in the allocation
graph Γ+

g for the extension g+ are the same as the lengths in the allocation
graph Γg for the original allocation function g. As a consequence, the pa-
rameter l̄+i in the objective function (27) is simply l̄i, the average length of
the arcs that terminate at node i in the allocation graph for g.

Corollary 1. If the allocation function g : V → A is dominant strategy im-

plementable and satisfies the zero 2-cycle condition, then

g(v) = ai for some i ∈ argmax
i∈M

{vi − l̄i}, ∀v ∈ V. (30)

Proof. This result follows directly from Lemma 6 and Theorems 9, 10, and
12.

Note that Corollary 1 applies when the assumptions of either Theorem 6
or Theorem 7 are satisfied.

For an n-person mechanism, let N = {1, . . . , n} be the set of individuals
and V i be the type space of the ith individual with typical element vi. A
profile of types is a vector v = (v1, . . . , vn). An allocation function is a
function G :

∏

i∈N V i → A. G is dominant strategy implementable if each
one-person allocation function obtained by fixing the types of all but one
individual is dominant strategy implementable. G is an affine maximizer if
there exist n nonnegative scalars w1, . . . , wn that are not all equal to zero
and a scalar Ki for each i ∈ M such that

G(v) = ai for some i ∈ argmax
i∈M

[

n
∑

j=1

wjv
j
i +Ki

]

, ∀v ∈
∏

i∈N

V i. (31)

Roberts’ Theorem (Roberts, 1979) shows that if G is dominant strategy
implementable and surjective, then G is an affine maximizer if A contains at
least three alternatives and each type space V i is unrestricted.18 Roberts’
Theorem has only been shown to hold for very particular restricted type
spaces (see, e.g., Carbajal et al., 2013; Mishra and Sen, 2012). For a domain
for which Roberts’ Theorem does apply, by considering an individual j∗ for

18Carbajal et al. (2013) and Mishra and Sen (2012) have identified sufficient conditions
for an affine maximizer to be dominant strategy implementable.

32



whom the weight in (31) is positive and normalizing the weights so that
wj∗ = 1, the maximands in (31) can be rewritten as

vj
∗

i +
∑

j 6=j∗

wjv
j
i +Ki, ∀i ∈ M. (32)

Now fix the types of all individuals j 6= j∗ by setting vj = v̄j. For the
resulting one-person allocation function g for individual j∗, Theorem 12 and
(32) imply that

−l̄+i =
∑

j 6=j∗

wj v̄
j
i +Ki, ∀i ∈ M.19

Thus, the parameters in the objective function of our affine maximization
problem can be equivalently expressed in terms of the variables and param-
eters that appear in the objective function in Roberts’ Theorem for any
domain for which this theorem applies, thereby demonstrating the relevance
of arc lengths for Roberts’ objective function.

Crowell and Tran (2016) have used tropical geometry to analyze dominant
strategy incentive compatible mechanisms. The max-plus algebra of tropical
geometry can be employed to provide an alternative perspective on our affine
maximization results and on the geometry of the difference sets that underly
them.20 The max-plus algebra (R,⊕,⊙) is defined with tropical addition
a⊕ b = max{a, b} and tropical multiplication a⊙ b = a+ b. The maximand
in (28) can be rewritten as the tropical polynomial

(

−l̄+1 ⊙ (v1)
1(v2)

0 · · · (vm)0
)

⊕ · · · ⊕
(

−l̄+1 ⊙ (v1)
0 · · · (vm−1)

0(vm)
1
)

(33)

or, equivalently, as

(

−l̄+1 ⊙ v1
)

⊕
(

−l̄+2 ⊙ v2
)

⊕ · · · ⊕
(

−l̄+m ⊙ vm
)

. (34)

A tropical polynomial has integer exponents. In (33), they are all either 0 or
1. For all v ∈ V , g(v) = ai only if the ith term in the tropical sum in (34)
is maximal. In other words, our problem of finding the maximum of a finite
number of affine equations is equivalent to finding the largest coefficient in
the corresponding tropical polynomial.

19Our assumption that g(V ) contains at least two alternatives ensures that j∗ is in fact
someone with positive weight in (31).

20See Maclagan and Sturmfels (2015) for an introduction to tropical geometry. Its use
in Economics has been pioneered by Baldwin and Klemperer (2016).
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For the dominant strategy implementable allocation function g : V → A,
let

Tg = {v ∈ V |v ∈ Pi ∩ Pj for distinct i, j ∈ M}. (35)

The set Tg consists of the types that lie in a common facet of two (or more)
difference sets. In tropical geometry, the set of points generated in this
way from a finite set of polyhedra whose facets have normals with integer
components is called a tropical hypersurface. Here, the normal of a facet
only has two non-zero components, one of which is equal to 1 and the other
is equal to −1. It is this special geometric structure that underlies our results.
An implication of Theorem 12 is that Tg is the set of roots of the tropical
polynomial in (34); that is, it is the set of types for which more than one
coefficient in (34) has the same value.

10. Economic Applications

In this section, we illustrate our analysis with two economic applications. In
the first, we consider a Vickrey (1961) auction. In the second, we consider a
variant of a combinatorial auction studied by Vohra (2011).

Example 7. With a Vickrey (1961) auction of a single unit of an indivisible
object, the object is allocated to the highest bidder with ties broken arbi-
trarily. The winner pays the second highest bid and the loser pays nothing.
Vickrey has shown that it is a dominant strategy for each person to bid his
true value for the object.

Consider the auction from the perspective of a given individual. The set
of alternatives is A = {a1, a2}, where in alternative a1, this person gets the
object, whereas in alternative a2, he does not. Let b̄ > 0 denote the highest
value for the object among the other bidders. The type space V for the
one-person allocation function g : V → A is R+ × {0}. That is, this person
can have any nonnegative value for the object, but has a zero valuation if he
does not receive it. For concreteness, suppose that a tie is broken in favor of
this individual.

The type space is convex and there are only two alternatives, so by The-
orem 7, the zero 2-cycle condition holds and the vertices of the normalized
difference sets must be identical. We have

l(a2, a1) = inf
v1≥b̄

[v1 − v2] = inf
v1≥b̄

v1 = b̄
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and
l(a1, a2) = inf

v1<b̄
[v2 − v1] = − sup

v1<b̄

v1 = −b̄,

which confirms that the length of a 2-cycle is zero. The common vertex p of
the two normalized difference sets is (b̄/

√
2,−b̄/

√
2), which is the projection

of (b̄, 0) to 1⊥. Thus, P̂1 = {v ∈ 1⊥|v1 ≥ b̄/
√
2)} and P̂2 = {v ∈ 1⊥|v1 ≤

b̄/
√
2)}.
We now confirm that g is an affine maximizer with g(v) given by (30).

Here, l̄1 = b̄/2 and l̄2 = −b̄/2 because loops have zero length. We have

v1 −
b̄

2
≥ v2 −

b̄

2
↔ v1 ≥ v2 + b̄ ↔ v1 ≥ b̄,

where the fact that v2 = 0 is used to establish the last equivalence. Thus,
in accordance with Corollary 1, the allocation function for a Vickrey auction
can be described using (30).

Example 8. Vohra (2011, pp. 48–49) considers a combinatorial auction in
which up to two indivisible objects are allocated to a single individual and
the value of having both objects is equal to the value of the object with the
highest valuation. He shows that if the 2-cycle nonnegativity condition is
satisfied, then the allocation function is dominant strategy implementable.
We illustrate our analysis with a simplified version of this auction in which
the individual must be allocated at least one of the two objects. With this
simplification, the normalized type space is two dimensional. If, as Vohra
assumes, the value of receiving no object is always zero, it is straightforward
to include receiving no object as an option, but at the cost of making the
discussion more complex.

The set of alternatives is A = {a1, a2, a3}. The individual is allocated the
first object alternative in a1, the second object in a2, and both objects in a3.
The type space is

V = {(v1, v2,max{v1, v2})|v1, v2 ≥ 0}.
Note that this type space is not convex. We can rewrite V as the union of
two two-dimensional cones:

V = pos{(1, 1, 1), (1, 0, 1)} ∪ pos{(1, 1, 1), (0, 1, 1)},
where

pos{z1, z2} =

{

2
∑

i=1

αi z
i|αi ≥ 0

}

, ∀z1, z2 ∈ R
3,
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is the positive cone spanned by z1 and z2. The first and last components of
the vectors in the first of these conjuncts are equal, as are the second and
third components of the vectors in the second of them. It thus follows that
V̂ , the projection of V onto 1⊥, can be written as

V̂ = pos{(1,−2, 1),0} ∪ pos{(−2, 1, 1),0}.

That is, V̂ is the union of two rays with endpoints at the origin.
The normalized difference sets {P̂i} are two-dimensional cones. The rays

defining P̂i are obtained by intersecting the two-dimensional hyperplanes Hij

for j 6= i with 1⊥. Thus, P̂1 is bounded by two rays, one generated by a vector
in H12 ∩ 1⊥ and the other generated by a vector in H13 ∩ 1⊥. The halfspaces
H12 andH13 are orthogonal to (1,−1, 0) and (1, 0,−1), respectively, so we can
take the first of these vectors to be (1, 1,−2) and the second to be (1,−2, 1).
We can therefore express P̂1 as

P̂1 = p1 + pos{(1, 1,−2), (1,−2, 1)}.

Similarly, we have that

P̂2 = p2 + pos{(1, 1,−2), (−2, 1, 1)}

and
P̂3 = p3 + pos{(1,−2, 1), (−2, 1, 1)}.

For each of these three normalized difference sets, the angle formed by
their bounding rays is 2π/3. The rays bounding P̂3 are parallel to the two
rays that generate V̂ , whereas P̂1 and P̂2 each have only one bounding ray
parallel to one of the rays that generate V̂ . Moreover, because V̂ is closed,
in view of how the length lij that is used to define the Hij hyperplane in (4)
is determined by the infimum operation in (2), for each of the normalized
difference sets, at least one facet must be contained in one of the rays that
generate V̂ .21 It follows from these observations that in order for an allocation
function to be dominant strategy implementable, every vertex pi must lie in
V̂ . There are two basic cases.

Case 1: p3 = 0. In this case, V̂ coincides with the boundary of P̂3. Then
p1 can lie anywhere on the ray through (1,−2, 1) and p2 can lie anywhere on

21Only P̂3 can have both facets in V̂ , and that is only possible if V̂ coincides with these
two facets.
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P̂3

P̂1P̂2
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Figure 5: The Cases in Example 8.

the ray through (−2, 1, 1). We have that l13 + l31 = 0 and l23 + l32 = 0, but
unless all three vertices are identical, l12 + l21 > 0. This case is illustrated in
Figure 5(a). The allocation function assigns a3 to all types whose projection
to V̂ is between p1 and p2 in V̂ . It assigns either a1 or a3 to all types whose
projection to V̂ is weakly to the right of p1 on the ray through (1,−2, 1),
with at least one of these types assigned a1. Similarly it assigns either a2 or
a3 to all types whose projection to V̂ is weakly to the left of p2 on the ray
through (−2, 1, 1), with at least one of these types assigned a2.

Case 2: If p3 6= 0, then it must be the case that p1 = p2 = 0. In this
case, we have that l12 + l21 = 0 and either l13 + l31 = 0 or l23 + l32 = 0, but
not both. This case is illustrated in Figure 5(b) for the situation in which p3

lies on the ray through (1,−2, 1). The allocation function assigns either a1
or a2 to all types whose projection to V̂ is the origin, a1 to all types whose
projection to V̂ is between the origin and p3 on the ray through (1,−2, 1),
a2 to all types whose projection to V̂ is to the left of the origin on the ray
through (−2, 1, 1), and either a1 or a3 to all types whose projection to V̂ is
weakly to the right of p3 on the ray through (−2, 1, 1), with at least one of
these types assigned a3. For the situation depicted, it is the length l23 + l32
that is positive. If, however, p3 were to lie on the ray through (−2, 1, 1), then
it would be the length l13 + l31 that is positive.

The type space V is connected, so by Theorem 8, the zero 2-cycle graph
Γ2
g is connected. Hence, because there are three alternatives, there can be at

most one pair of nodes in the allocation graph Γg whose 2-cycles have positive
length, which we have confirmed is the case. The unique situation in which
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the zero 2-cycle graph Γ2
g is complete occurs when p1 = p2 = p3 = 0. For

this reason, in both Case 1 and Case 2, the common vertex of the normalized
difference sets for the extension of the allocation function to all of R3 is the
origin. As a consequence, the lengths l+ij are all zero. Thus, by Theorem 12,
a necessary condition for the allocation function to be dominant strategy
implementable is that it assigns each type a value-maximizing alternative.
This is indeed the case in both Case 1 and Case 2.

11. Concluding Remarks

Gui et al. (2004), Vohra (2011), and Cuff et al. (2012), among others, have
shown how the structure of dominant strategy implementable allocation func-
tions can be identified by investigating the geometric configuration of its
difference sets. We have introduced normalized difference sets and shown
that it is possible to identify even more of this structure by examining their
properties. In particular, we have shown that all cycles in the allocation
graph having zero length is a necessary condition for an allocation function
to be dominant strategy implementable if and only if the vertices of these
sets coincide. While it is known from the Rockafellar–Rochet Theorem that
the nonnegativity of all of the cycles in the allocation graph is necessary
for dominant strategy implementability, little attention has previously been
given to determining when these cycle lengths are in fact zero. Cuff et al.
(2012) have shown that this is the case if the type space is the product of
intervals and a mild regularity condition is satisfied. We have shown that
this zero cycle condition holds in a much larger class of circumstances and
that, even when not all cycles need be zero, it is often the case that many of
them must be.

The necessity of a dominant strategy implementable n-person allocation
function being an affine maximizer has only been established for very spe-
cial type spaces (see Roberts, 1979; Carbajal et al., 2013; Mishra and Sen,
2012). We have shown that any one-person dominant strategy implementable
allocation function obtained by fixing the types of the other individuals is
necessarily an affine maximizer and that the objective function in this piece-
wise affine maximization problem has a rather simple functional form. This
functional form can be identified using our finding that this one-person alloca-
tion function has a universal domain extension that satisfies the zero 2-cycle
condition. This result provides a further reason as to why cycles with zero
lengths are of interest. Furthermore, our affine maximizer result provides a
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new perspective on what dominant strategy implementability entails.
We have also contributed to the relatively small literature on dominant

strategy implementability with nonconvex type spaces (see, e.g., Carbajal
and Müller, 2015; Kushnir and Galichon, 2016; Mishra et al., 2014). We
believe that the geometric approach used here can be fruitfully employed to
further enhance our understanding of dominant strategy implementability on
such domains and, more generally, of alternative concepts of implementabil-
ity.
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