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Abstract
This paper examines the efficiency of technology-led banks (i.e. internet banks, mobile banks or FinTech startups

offering banking services) in a simple theoretical model using conventional banks as a competitive benchmark. We

show that the fate of technology-led banks crucially relies on their level of asset transformation. We identify two

critical thresholds of asset transformation in a general contractual setting. The first determines whether technology-led

banks are feasible to set up, while the second determines when technology-led banks are at least as attractive as

conventional banks.
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1. Introduction

Conventional banks around the world have been facing competition from new challengers
that emerged successively in the mid-2000s during the internet revolution and at the
beginning of the 2010s in the wake of the FinTech revolution. This new competition has
resulted in a highly fragmented competitive landscape. The boundaries of the banking
sector have also become more difficult to ascertain because of the different uses of the
term ”banks” as well as varying definitions of FinTech. Indeed, the emergence of internet
banks in a first step, followed by that of mobile banks and FinTech startups offering
banking services, has led to an extensive perception of what a bank is.

In the academic literature, the definition of conventional banks traditionally relies on
four characteristics (Chiorazzo et al. 2018): (i) granting credit, (ii) receiving deposits,
which are the core source of funding, (iii) gathering several sources of income based
on interest rate margins (lending) and fees (deposit and financial services), and (iv)
developing a physical network of bank branches. Contrary to the conventional banking
model, challengers do not necessarily exhibit these four characteristics. Indeed, some
challengers are mono-product firms (e.g., FinTech startups), only offering payment or
lending services for example, while others are multi-products companies (e.g., internet
banks and digital banks). Sources of income vary between challengers. FinTech startups
may depend almost exclusively on fundraising, while internet and digital banks have
access to different sources of income. In addition, internet and digital banks may operate
under a banking license (note that this is not the case for all of them), while FinTech
startups tend to operate under a payment services agreement. Despite these differences,
all challengers are similar in their use of digital technology. We define these challengers as
technology-led banks (T-L banks). The fate of firms such as internet banks, digital banks
and FinTech startups offering banking services largely depends on their competitiveness
vis-à-vis conventional banks.

There is a large consensus that one of the competitive advantages of T-L banks de-
rives from their more intensive – almost exclusive – use of digital technology and from the
absence of a physical network of bank branches (Arnold and van Ewijk 2011), resulting
in lower production costs than conventional banks (Thakor 2020).1 Another feature that
we observed in the few publicly available T-L banks ’ annual reports is that customers’
deposits are mainly held in ”cash and cash equivalent” and ”cash and balances at central
bank(s)”, suggesting that these T-L banks either lack or have a limited asset transforma-
tion function. Two possible reasons may be put forward to explain this feature. First,
regulation may prevent T-L banks, especially those operating under a payment services
license, from transforming deposits into loans or investing them in the financial mar-
ket. Second, there is a potential mismatch between the short-term liquidity needs of
T-L banks ’ customers and T-L banks ’ investments in financial markets. T-L banks have
to probably hold more liquid assets than conventional banks. These banks have mainly
young and low-income customers (e.g., students) who may be less likely to apply for
credit, such as real estate loans. Moreover, many customers hold secondary accounts
in T-L banks (Arslanian and Fischer 2019) for daily payments and do not borrow from
them.

In this context, our paper aims to examine the efficiency of T-L banks using conven-

1Many scholars have pointed out the potential of FinTech and, more broadly, digital technologies to
transform and disrupt financial services by reducing operating costs in banking activities (see, among
others, Philippon 2016, Vives 2019 and Allen et al. 2021).



tional banks as a competitive benchmark. More particularly, we address how important
asset transformation is for the fate of T-L banks. For this purpose, we develop an orig-
inal and general theoretical model in which T-L banks bear lower operating costs than
conventional banks and have a limited ability to transform assets.

The main theoretical results of our article are summarized as follows. First, we show
that the cost advantage of T-L banks is not enough to ensure their viability. The fate
of T-L banks crucially relies on their level of asset transformation. Second, we identify
two critical thresholds of asset transformation. Under the first threshold, T-L banks
cannot offer a desirable deposit contract to consumers and, at the same time satisfy the
budget constraint of the bank (otherwise the bank would register losses). Between the
first and second threshold, T-L banks can offer a desirable deposit contract which remains
nevertheless less attractive than that of conventional banks. Above the second threshold,
T-L banks can offer a deposit contract at least as attractive as that of conventional banks.

While there is a growing empirical literature on challenger banks, including FinTech
companies, there are only a few theoretical papers providing frameworks for analyzing
the interaction between conventional banks and challengers (Tang 2019, Parlour et al.
2022, He et al. 2020). Furthermore, the main objectives of these theoretical studies are
different from ours. For instance, Tang (2019) examines the interaction between conven-
tional banks and peer-to-peer lending. Parlour et al. (2022) focus on payment services
and payment data. He et al. (2020) study the competition between FinTech and conven-
tional banks in lending services with banks’ customer data sharing, i.e. in a context of
open banking. We contribute to this scant theoretical literature by developing an original
theoretical framework that explicitly aims at explaining how asset transformation matters
for the fate of technology-led banks. We also make an indirect contribution to the mod-
elling of deposit contracting and allocative efficiency under a liquidity constraint. Since
asset transformation and the liquidity constraint are just two sides of the same coin, we
characterize the optimal deposit contract and assess its desirability under all permissible
liquidity constraints in a setting where banks bear an arbitrary cost of providing financial
services.

The remainder of the paper is organized as follows. In section 2, we present the general
setting of the model. In section 3, we characterize the optimal contracting in conventional
banks. In section 4, we introduce the T-L banking model and then characterize the
optimal deposit contract according to the level of asset transformation. We also derive
two critical thresholds of asset transformation. Finally, section 5 concludes.

2. The general setting

The model is a variation on the model of asset transformation by Diamond and Dybvig
(1983). The basic framework consists of three dates t = {0, 1, 2}, a mass of consumers
subject to a liquidity shock at the interim date, and two types of assets (short-term and
long-term ones). A single numeraire good is used for consumption and investment.

The numeraire good can either be allocated to a liquid risk-free short-term asset or
to a more productive but illiquid long-term asset. The short-term asset is accessible
to consumers without having to go through a bank. For one unit invested in t, this
short-term asset provides a unit return in t + 1. In contrast, the long-term asset is only
accessible through a bank.2 For one unit invested in t = 0, the long-term asset provides

2This assumption, known as limited market participation, is widespread in the literature – see, e.g.,



a certain return R > 1 in t = 2. We assume that early liquidation of the long-term asset
in t = 1 is not possible.

The economy is populated by a unitary mass of ex-ante identical consumers with an
individual one-unit endowment. They may be subject to a liquidity shock in t = 1 with
a probability λ that is common knowledge. Due to this shock, consumers can either
consume all their endowment in t = 1 (i.e. early consumption, C1) with a probability
λ, or choose to consume their endowment in t = 2 (i.e. late consumption, C2) with a
probability 1 − λ. The individual consumption pattern is private information which is
revealed in t = 1. Consumers’ preferences can be represented by an expected utility
function: U (C1, C2) = λu (C1) + (1− λ)u (C2) where u(·) is twice continuously differen-
tiable, increasing, strictly concave and satisfies the Inada conditions (limC→0 u

′ (C) = ∞
and limC→∞ u′ (C) = 0). We also assume that consumers are risk-averse agents with a
relative risk aversion greater than unity, i.e. −C[u′′(C)/u′(C)] > 1. This condition is
sufficient (but not necessary) to ensure that liquidity insurance is desirable.

The characteristics of this economy make it possible to improve social welfare by
setting up a banking organization. We study two alternative types of organization suc-
cessively: the conventional bank and the T-L bank. To avoid any misunderstanding, this
paper does not aim at modelling monopolistic competition or studying the interaction be-
tween the two types of banks. The conventional bank is simply used here as a benchmark
to assess the efficiency of the T-L bank.

3. The conventional bank: a competitive benchmark

The bank is set up in t = 0. It collects one unit of deposit from consumers and incurs
a fixed cost of cB for setting up the banking structure. We assume that the fixed cost
is low enough for the banking formation to be strictly desirable. The bank then invests
its available resources in either short-term or long-term assets. We denote by τBF the
share of resources allocated to the long-term asset and correspondingly 1− τBF the share
placed in the short-term asset. In t = 1, all consumers discover their ”type” (i.e. early
or late). On the one hand, early consumers immediately withdraw their deposits in
t = 1 and each receive DB

1
per unit of the initial deposit, which corresponds to a global

payout of λDB
1
. Given that the long-term asset is illiquid in t = 1, the resources that

will serve to meet these early withdrawals must be placed in the short-term asset: (1 −
τBF )(1− cB) = λDB

1
. On the other hand, late consumers wait to withdraw their deposits

in t = 2 and each receive DB
2

per unit of the initial deposit, which corresponds to a
global payout of (1 − λ)DB

2
. Given the early and late withdrawals, the bank’s budget

constraint is λDB
1
+(1−λ)DB

2
≤ (1− τBF )(1− cB)+ τBF (1− cB)R, which can be rewritten

as λDB
1
+ (1− λ)(DB

2
/R) ≤ 1− cB.

At the competitive equilibrium, the bank determines the terms of the optimal contract

Mankiw and Zeldes 1991, Diamond 1997, Basak and Cuoco 1998, Allen and Gale 2004, Marini 2005, He
and Krishnamurthy 2013, Kučinskas 2019, and Gale and Gottardi 2020.



by maximizing the utility of consumers under different constraints:

Max
DB

1
,DB

2

λ u(DB
1
) + (1− λ) u(DB

2
) (1)

s.t. λDB
1
+ (1− λ)

DB
2

R
≤ 1− cB, (2)

λu(DB
1
) + (1− λ)u(DB

2
) ≥ u(1), (3)

DB
1
≤ DB

2
. (4)

Constraint (2) is the budget constraint mentioned above. It states that the actualized
payouts to consumers must not exceed the initial consumers’ endowment net of the cost of
setting up the bank, i.e. it ensures that the bank does not make losses. Next, constraint
(3) is the participation constraint of consumers. It states that the utility derived from
the deposit contract must be at least equal to the utility derived from the investment
in the short-term asset. Finally, constraint (4) is an incentive-compatibility constraint
stating that withdrawal in t = 1 must not dominate withdrawal in t = 2. This constraint
ensures that the bank does not experience a run in t = 1.3

There exists an optimal contract that satisfies all the aforementioned constraints if
the cost of setting up the bank cB is low enough4, which we assume to be true in our
case:

Proposition 1. The optimal contract is characterized by the following conditions:

u′(DB∗

1
)

u′(DB∗

2
)
= R (5)

and

λDB∗

1
+ (1− λ)

DB∗

2

R
= 1− cB. (6)

This result is close to that of Diamond and Dybvig (1983), except for the cost of setting
up the bank. Condition (5) is a usual one about the marginal rate of substitution between
consumption flows in t = 1 and t = 2. Condition (6) is simply the active budget constraint
of the bank. Technical details are provided in Appendix A.

It can be deduced from Proposition 1 that:5

Corollary 1. The optimal contract is characterized by

1 < DB∗

1
< DB∗

2
< R. (7)

The bank thus uses the deposit contract to provide liquidity insurance to consumers (i.e.
smoothing of consumption patterns depending on consumer types).

3The long-term asset cannot be liquidated in t = 1. This implies that withdrawals cannot exceed the
investment in the short-term asset in t = 1 and that the bank can meet its contractual commitments in
t = 2. The bank then experiences no run of late depositors if DB

1
≤ DB

2
.

4We assume that there exists a certain threshold cBmax such that the optimal contract satisfies both
the budget constraint of the bank and the participation constraint of consumers if cB < cBmax (see Lemma
1 in Appendix A).

5See proof of Lemma 1 in Appendix A.



4. The transformation issue in the technology-led bank

In this section, we analyze the allocation of resources of a T-L bank. Henceforth we
adapt our notations by using the superscript TL. Analogous to the previous section, we
denote by DTL

1
and DTL

2
the terms of the deposit contract offered by the T-L bank. While

the basic framework is similar to that of the conventional bank, there are two features
upon which we can distinguish the T-L bank from the conventional bank. First, the T-L
bank has a more efficient technology that reduces the production cost of banking services
such as cTL < cB. Second, the T-L bank can possibly face more constraints than the
conventional bank in terms of investment opportunities stemming from regulations or its
business model.

Without loss of generality, we assume that the transformation level of the T-L bank is
capped at a level τTL that is less than or equal to the free optimum τTL

F : 0 ≤ τTL ≤ τTL
F .6

It is therefore optimal for the T-L bank to saturate this transformation constraint and
invest a share τTL of its resources in the long-term asset that dominates the short-term
asset (i.e. the bank has no reason to invest less than τTL in the long-term asset if τTL ≤
τTL
F ). The budget constraint of the T-L bank is then given by (1−τTL)(1−cTL)−λDTL

1
+

τTL(1− cTL)R− (1− λ)DTL
2

≥ 0. It is also necessary to introduce the following liquidity
constraint in t = 1 to ensure that the payouts provided to consumers do not exceed the
total amount of funds at the T-L bank ’s disposal at that date: λDTL

1
≤ (1−τTL)(1−cTL).7

As a result, the optimization program of the T-L bank is the following:

Max
DTL

1
,DTL

2

λ u(DTL
1

) + (1− λ) u(DTL
2

) (8)

s.t. (1− τTL)(1− cTL)− λDTL
1

+ τTL(1− cTL)R− (1− λ)DTL
2

≥ 0, (9)

λDTL
1

≤ (1− τTL)(1− cTL), (10)

λu(DTL
1

) + (1− λ)u(DTL
2

) ≥ u(1), (11)

DTL
1

≤ DTL
2

. (12)

Constraints (9) and (10) are respectively the budget constraint and the liquidity con-
straint mentioned above. Constraints (11) and (12) are respectively the participation
constraint of consumers and the incentive-compatibility constraint, defined in a similar
way to the conventional bank.

To solve the T-L bank ’s maximization problem and determine the characteristics of the
optimal deposit contract, we disregard at first the participation constraint of consumers
(11). Then we examine both the attractiveness of the deposit contract and the status of
the participation constraint of consumers with regard to the level of asset transformation.

We show in Appendix B that:

6The free optimum τTL

F
corresponds to the share of resources allocated to the long-term asset when

the T-L bank faces no constraints of asset transformation. Analogous to the conventional bank in the
previous section, τTL

F
= 1− (λDTL

1 /(1− cTL)) with cTL < cB .
7The liquidity constraint was implicitly integrated into the optimal portfolio choice for the conven-

tional bank:
(

1− τB
F

) (

1− cB
)

= λDB
1 . The analogous equality, however, does not necessarily hold for

the T-L bank because of the constraint on its placements. Therefore, the liquidity constraint must be
explicitly stated to ensure that the deposit contract is honored by the T-L bank in t = 1.



Proposition 2. There exists a switching threshold of transformation

τTL
S =

1− λ

1 + λ(R− 1)
, 0 < τTL

S < τTL
F , (13)

such as:

— if 0 ≤ τTL ≤ τTL
S , then the optimal contract is characterized by

DTL∗
1

= DTL∗
2

= DTL∗ (14)

and
DTL∗ = (1− cTL)

[

1 + τTL (R− 1)
]

; (15)

— if τTL
S < τTL ≤ τTL

F , then the optimal contract is characterized by

u′(DTL∗
1

) = u′(DTL∗
2

) + µ2, µ2 > 0 (16)

and

λDTL∗
1

+ (1− λ)
DTL∗

2

R
= 1− cTL, (17)

where µ2 is the Lagrange multiplier associated with the liquidity constraint (10).

The characteristics of the optimal contract can be explained in an intuitive way. On the
one hand, if 0 ≤ τTL ≤ τTL

S , then the investment level in the long-term asset is relatively
limited. Consequently, the T-L bank has significant liquidity in t = 1 and it can equalize
the proposed payouts in t = 1 and t = 2 without any negative trade-off, which is desirable
given the risk aversion of consumers. On the other hand, if τTL

S < τTL ≤ τTL
F , then the

investment level in the long-term asset is relatively large and the remaining liquidity in
t = 1 is relatively low. To be desirable, equalizing payouts in t = 1 and t = 2 would
require to increase the payout in t = 1. This is however impossible to achieve by the T-L
bank without relaxing the liquidity constraint. To equalize payouts on both dates, the T-
L bank could eventually reduce its investment in the long-term asset. However, we show
in Appendix B that this is not a desirable solution either, because it reduces the utility
derived from the deposit contract. We can therefore deduce that if τTL

S < τTL ≤ τTL
F ,

the optimal contract is characterized by DTL∗
1

< DTL∗
2

.
The switching threshold τTL

S can occur in any arbitrary region of the interval [0, τTL
F ],

depending on the value of the parameters. Nevertheless, knowledge of the characteristics
of the optimal contract allows us to show that the corresponding maximum-value function
is continuous and monotonous, regardless of the region where the switching threshold
occurs (see Lemma 6 in Appendix C). The intermediate value theorem then directly
establishes the following proposition regarding the attractiveness of the contract according
to the level of asset transformation (Appendix C):

Proposition 3. There are two critical levels of asset transformation τTL and τTL that
define three degrees of attractiveness of the deposit contract offered by the T-L bank:

1. If 0 ≤ τTL < τTL, then the deposit contract cannot simultaneously satisfy the
participation constraints of consumers and the budget constraint of the bank (i.e.
unfeasible contract);



2. If τTL ≤ τTL < τTL, then the deposit contract is feasible but less attractive than the
one offered by the conventional bank (i.e. dominated contract);

3. If τTL ≤ τTL ≤ τTL
F , then the deposit contract is feasible and at least as attractive as

the one offered by the conventional bank (i.e. dominant contract – strict dominance
when τTL > τTL).

Figure 1 summarizes graphically proposition 3. The function V (c, τ) represents the
maximum-value function which is the maximum utility derived by consumers from the
optimal allocation for a given implementation cost c and a given asset transformation
level τ . It follows that V (0, 0) = u(1) represents the participation constraint of con-
sumers, V (cB, τBF ) is the utility derived from the optimal contract of the conventional
bank with free asset transformation, and V (cTL, τTL) is the utility derived from the opti-
mal contract of the T-L bank depending on its level of asset transformation τTL.8 When
this transformation level is below τTL, the T-L bank cannot implement a contract that
satisfies the participation constraint of consumers, assuming the T-L bank respects its
budget constraint. When its transformation level is between τTL and τTL, the T-L bank
can implement a contract that satisfies the participation constraint of consumers but
remains less attractive than the one offered by the conventional bank. When its transfor-
mation level is higher than τTL, the T-L bank can implement a contract that satisfies the
depositor participation constraint and is more attractive than that of the conventional
bank.

τTL

V (c, τ)

0

V (0, 0) = V (cTL, τTL)
Participation constraint

of consumers

V (cB, τB) = V (cTL, τTL)
Optimal contract in

conventional bank

V (cTL, 0)

V (cTL, τTL
F )

Optimal contracts

in T-L bank

b

b

bV (cTL, τTL
S )

b

b

τTL τTL

S τTL τTL
F

Unfeasible
contract

Dominated
contract

Dominant
contract

Figure 1: The T-L bank ’s attractiveness according to the transformation level of assets

The attractiveness of the contract offered by the T-L bank ultimately depends on its
capacity to transform its assets given the cost savings made possible by its production
technology.

8The shape of the maximum value function follows directly from the proof of Lemma 6 in Appendix
C. The switching threshold is arbitrarily set in the central region for illustration purposes. However, it
can occur in any of the three regions, depending on the parameter values.



A point of discussion regarding the possible empirical implications of our model con-
cerns the lack of co-existence of the T-L bank and the traditional bank in our current
setting. Indeed, studying the interaction between the two types of banks goes beyond
the initial scope of our paper as mentioned at the end of section 2. Despite this apparent
limit of our model, real world observations of T-L banks suggest that while they remain
on the market, many of them have registered negative profits. For example, the net
loss of Nubank, one of the biggest challenger banks in Latin America with 65 million of
claimed users in 2022, was as high as USD 175 million in the very same year. In Europe,
the net loss of Monzo was around 130 GBP million in 2021. The latest figures reported
by Revolut revealed losses around of 168 GBP million in 2020. Other examples include
Klarna and N26, two main European T-L banks. In the US, Dave or even Varo are not
profitable to date. As mentioned in the introduction, many T-L banks do not disclose
information about their net incomes, but for those that do, we observed that customers’
deposits are mainly held in ”cash and cash equivalent” and ”cash and balances at central
bank(s)”, suggesting that these T-L banks do not have or have a limited asset transfor-
mation function. Thus, we believe that the main result of our model stating that the fate
of T-L banks is closely related to the asset-transformation level does not strike very far
from real-world observations.

5. Concluding remarks

In this article, we build an original theoretical framework and analyze the importance of
asset transformation for the fate of T-L banks in a contractual setting where T-L banks
bear lower operating costs than conventional banks. Our results suggest that the cost
advantage of T-L banks is not enough to ensure their viability, which crucially relies
on their level of asset transformation. We also identify two critical thresholds of asset
transformation that define the degrees of attractiveness of T-L banks ’ deposit contract
compared to that of conventional banks. Our model provides a solid theoretical back-
ground to deepen the understanding of these new challengers featuring lower production
costs.

An issue that arises from our model concerns the viability of T-L banks. Empirical
evidence shows that most T-L banks make losses, suggesting that their level of asset
transformation is not sufficient to simultaneously attract customers and be profitable. It
should be noted, however, that both the cost and the asset transformation levels are part
of the T-L banks ’ business model. Future developments will show whether the T-L banks
will be able to transform their model while maintaining their cost advantage.

Appendices

A. Proof of Proposition 1

The Lagrangian function corresponding to the optimization problem of the conventional
bank is

LB =λu(DB
1
) + (1− λ)u(DB

2
)− µ1

[

λDB
1
+ (1− λ)

DB
2

R
− 1 + cB

]

− µ2

[

u(1)− λu(DB
1
)− (1− λ)u(DB

2
)
]

− µ3

[

DB
1
−DB

2

]

, (A.1)



where µi are the Lagrange multipliers.
The strict concavity of the Lagrangian function implies that the following conditions

are sufficient for optimality (Karush-Kuhn-Tucker conditions):

∂LB

∂DB∗

1

= (1 + µ2)u
′(DB∗

1
)− µ1 −

µ3

λ
= 0, (A.2)

∂LB

∂DB∗

2

= (1 + µ2)u
′(DB∗

2
)−

µ1

R
+

µ3

1− λ
= 0, (A.3)

µ1 ≥ 0, and µ1 = 0 if λDB∗

1
+ (1− λ)

DB∗

2

R
< 1− cB, (A.4)

µ2 ≥ 0, and µ2 = 0 if λu(DB∗

1
) + (1− λ)u(DB∗

2
) > u(1), (A.5)

µ3 ≥ 0, and µ3 = 0 if DB∗

1
< DB∗

2
. (A.6)

It comes directly from (A.3) that µ1 > 0. It then results from (A.4) that the budget
constraint of the bank (2) is active:

λDB
1
+ (1− λ)

DB
2

R
= 1− cB. (A.7)

If µ3 > 0, then it comes directly from (A.6) that DB∗

1
= DB∗

2
= DB∗. However,

we deduce from conditions (A.2) and (A.3) that µ1 < 0 if µ3 > 0, which contradicts
the non-negativity condition on µ1 (A.4). It results from this contradiction that µ3 =
0. Nevertheless, the nullity of the multiplier µ3 does not imply that the corresponding
incentive-compatibility constraint (4) is inactive. We examine the status of this constraint
in the next paragraph.

Since µ3 = 0, we can combine conditions (A.2) and (A.3) by eliminating 1 + µ2:

u′(DB∗

1
)

u′(DB∗

2
)
= R. (A.8)

Note that u′(DB∗

1
)/u′(DB∗

2
) = R > 1. Thus, the strict concavity of u(.) implies that

DB∗

1
< DB∗

2
, which proves that the incentive-compatibility constraint (4) is inactive.

It is furthermore possible to prove that the participation constraint of consumers is
inactive when the cost of setting up the bank is sufficiently low:

Lemma 1. There exists a positive threshold cBmax such that λu(DB∗

1
) + (1− λ)u(DB∗

2
) >

u(1) if cB < cBmax.

Proof. The budget constraint of the bank is active for all cB (A.7), which implies that:

(i) The participation constraint of consumers is inactive when cB = 0:
Condition (A.8) can be written as 1u′(DB∗

1
) = Ru′(DB∗

2
), where R > 1. The risk

aversion of consumers implies that 1u′(1) > Ru′(R).9 Consequently, condition (A.8)
is only satisfied if DB∗

1
> 1 and DB∗

2
< R. As previously shown, the strict concavity

of u(.) implies that DB∗

1
< DB∗

2
if u′(DB∗

1
)/u′(DB∗

2
) = R > 1. It then results that

1 < DB∗

1
< DB∗

2
< R. Moreover, the terms of this deposit contract are compatible

9We assume in the model that the coefficient of relative risk aversion of consumers is greater than unity:
−Cu′′(C)/u′(C) > 1. This inequality can be rewritten as u′(C) + Cu′′(C) < 0, or ∂Cu′(C)/∂C < 0.



with the bank’s budget constraint when cB = 0. It results that the contract is
feasible and the participation constraint of consumers is inactive when cB = 0:
λu(DB∗

1
) + (1− λ)u(DB∗

2
) > u(1).

(ii) The participation constraint of consumers cannot be fulfilled when cB = 1:
If cB = 1, then the [active] budget constraint of the bank is given by λDB∗

1
+

(1 − λ)(DB∗

2
/R) = 0. Since consumers have entrusted the bank with all their

endowment in t = 0, they cannot make any further deposits, and the terms of the
deposit contract cannot be negative: DB∗

1
≥ 0 and DB∗

2
≥ 0. As a result, the bank’s

budget constraint can only be satisfied when DB∗

1
= DB∗

2
= 0. This last condition

then implies that the deposit contract cannot fulfill the participation constraints of
consumers: λu(0) + (1− λ)u(0) = u(0) < u(1).

Let V B(cB) be the maximum-value function associated with the optimization problem
of the conventional bank (we omit all irrelevant parameters):

V B(cB) = max{U(DB
1
, DB

2
) : gi(D

B
1
, DB

2
, cB) ≤ 0, i = 1, . . . , m}, (A.9)

where U(DB
1
, DB

2
) = λu(DB

1
)+(1−λ)u(DB

2
) is the objective function of the conventional

bank, and gi(D
B
1
, DB

2
, cB) ≤ 0, the various constraints to which the deposit contract

is subject. It follows from the envelope theorem that V B(cB) is a strictly decreasing
function of the cost of setting up the bank cB: ∂V B/∂cB = ∂LB/∂cB = −µ1 < 0. Since
V B(0) > u(1) and V B(1) < u(1) (items i and ii), the intermediate value theorem implies
that there exists a unique value 0 < cBmax < 1 such that V B(cBmax) = u(1). The strict
decrease of V B(cB) in cB also implies that V B(cB) > u(1) if cB < cBmax.

We assume in the model that the cost of setting up the bank is low enough that this
solution is desirable (cB < cBmax). It follows that the participation constraint of consumers
(3) is inactive and that µ2 = 0.

B. Proof of Proposition 2

Excluding the participation constraint of consumers (11), the Lagrangian function asso-
ciated with the optimization problem of the T-L bank is

LTL = λu(DTL
1

) + (1− λ) u(DTL
2

)

− µ1

[

−(1− τTL)(1− cTL) + λDTL
1

− τTL(1− cTL)R + (1− λ)DTL
2

]

− µ2

[

λDTL
1

− (1− τTL)(1− cTL)
]

− µ3

[

DB
1
−DB

2

]

, (B.1)

where µi are the Lagrange multipliers.
The strict concavity of the Lagrangian function implies that the following conditions

are sufficient for optimality (Karush-Kuhn-Tucker conditions):

∂LTL

∂DTL∗
1

= u′(DTL∗
1

)− µ1 − µ2 −
µ3

λ
= 0, (B.2)

∂LTL

∂DTL∗
2

= u′(DTL∗
2

)− µ1 +
µ3

1− λ
= 0, (B.3)



µ1 ≥ 0, and µ1 = 0 if (1− τTL)(1− cTL)− λDTL
1

+ τTL(1− cTL)R− (1− λ)DTL
2

> 0, (B.4)

µ2 ≥ 0, and µ2 = 0 if λDTL
1

< (1− τTL)(1− cTL), (B.5)

µ3 ≥ 0, and µ3 = 0 if DTL∗
1

< DTL∗
2

. (B.6)

It comes directly from (B.3) that µ1 > 0. It then results from (B.4) that the budget
constraint of the bank (9) is active.

As in the case of the conventional bank, it can easily be proved by contradiction that
µ3 = 0. We examine the status of the corresponding incentive-compatibility constraint
(12) in Lemma 2.

Given that µ3 = 0, we can combine conditions (B.2) and (B.3) by eliminating µ1:

u′(DTL∗
1

) = u′(DTL∗
2

) + µ2. (B.7)

It appears in (B.7) that the characteristics of the optimal deposit contract crucially
depend on the value of the multiplier µ2:

Lemma 2. There are two possible types of deposit contracts depending on the value of
the multiplier µ2:

(i) If µ2 = 0, then the optimal contract is characterized by

DTL∗
1

= DTL∗
2

= DTL∗ (B.8)

and
DTL∗ = (1− cTL)

[

1 + τTL (R− 1)
]

; (B.9)

(ii) If µ2 > 0, then the optimal contract is characterized by

u′(DTL∗
1

) = u′(DTL∗
2

) + µ2 (µ2 > 0) (B.10)

and

λDTL∗
1

+ (1− λ)
DTL∗

2

R
= 1− cTL. (B.11)

Proof. We deal with the two cases separately:

(i) It comes directly from (B.7) that DTL∗
1

= DTL∗
2

= DTL∗ when µ2 = 0. The bank’s
budget constraint (9) can then be rewritten as DTL∗ = (1− cTL)

[

1 + τTL (R − 1)
]

.

(ii) It comes directly from (B.7) that u′(DTL∗
1

) = u′(DTL∗
2

)+µ2 when µ2 > 0. If µ2 > 0,
then the liquidity constraint (10) is active: λDTL∗

1
= (1−τTL)(1−cTL). As a result,

the bank’s budget constraint (9) can be rewritten as λDTL∗
1

+ (1 − λ)DTL∗
2

/R =
1− cTL.

The value of the multiplier µ2 associated with the liquidity constraint (10) in turn relies
on the level of asset transformation τTL, which then leads to determining the threshold
value of τTL below which µ2 is zero:



Lemma 3. The multiplier µ2 is zero when

τTL ≤ τTL
S =

1− λ

1 + λ(R− 1)
. (B.12)

Proof. It follows from the definition of τTL
S that: (i) the liquidity constraint (10) is

inactive and µ2 = 0 when τTL < τTL
S ; (ii) the liquidity constraint (10) is active and

µ2 > 0 when τTL > τTL
S .10 Then, the switching threshold τTL

S is the only point where
both the liquidity constraint (10) is active and the multiplier µ2 is zero simultaneously.
It results from µ2 = 0 that DTL∗

1
= DTL∗

2
= DTL∗ (B.7). The active liquidity constraint

(10) also implies that λDTL∗ = (1− τTL
S )(1− cTL). We get τTL

S directly by putting these
last two expressions into the bank’s budget constraint. Note that the set of parameters
values is such that 0 < τTL

S < τTL
F .

Proposition 2 follows directly from the combination of Lemmas 2 and 3.

C. Proof of Proposition 3

Let V θ(cθ, τ θ) be the maximum-value function of both types of banks:

V (cθ, τ θ) = max{U(Dθ
1
, Dθ

2
) : gi(D

θ
1
, Dθ

2
, cθ, τ θ) ≤ 0, i = 1, . . . , m} (C.1)

with θ = {B, TL}, the type of bank, U(Dθ
1
, Dθ

2
) = λu(Dθ

1
) + (1− λ)u(Dθ

2
), the objective

function of the bank, and gi(D
θ
1
, Dθ

2
, cθ, τ θ) ≤ 0, the various constraints to which the

deposit contract is subject.

Lemma 4. If τTL = 0, then V TL(cTL, τTL) < u(1).

Proof. If 0 ≤ τTL ≤ τTL
S , then the optimal deposit contract of the T-L bank is character-

ized by DTL∗
1

= DTL∗
2

= DTL∗ and DTL∗ = (1−cTL)
[

1 + τTL (R− 1)
]

(Proposition 2). In
the particular case where τTL = 0, the second condition becomes DTL∗ = (1− cTL) < 1.
It follows that u(DTL∗) < u(1) if τTL = 0, which proves that V TL(cTL, 0) < u(1).

Lemma 5. If τTL = τTL
F , then V TL(cTL, τTL) > V B(cB, τBF ).

Proof. If τTL
S < τTL ≤ τTL

F , then the optimal deposit contract of the T-L bank is char-
acterized by (16) and (17). The free optimal level of asset transformation τTL

F is also
characterized by

∂LTL

∂τTL
F

= (1− cTL)
[

µ1(R− 1)− µ2

]

= 0. (C.2)

It follows from (C.2) that µ2 = µ1(R − 1) when τTL = τTL
F . Given that µ3 = 0, it also

comes directly from (B.3) that µ1 = u′(DTL∗
2

). We then deduce that µ2 = u′(DTL∗
2

)(R−1).
Replacing the latter expression in (16), it results that u′(DTL∗

1
)/u′(DTL∗

2
) = R. Thus,

when τTL = τTL
F , the optimal deposit contract of the T-L bank is characterized by

u′(DTL∗
1

)/u′(DTL∗
2

) = R and λDTL∗
1

+ (1− λ)(DTL∗
2

/R) = 1− cTL. The optimal contract
of the T-L bank is then identical to the conventional bank one, except for the cost of
setting up the bank (cTL < cB). Given that V (c) is a strictly decreasing function in c
(∂V/∂c = ∂L/∂c = −µ1 < 0), the deposit contract of the T-L bank trivially dominates
the deposit contract of the conventional bank: V TL(cTL, τTL

F ) > V B(cB, τBF ).

10Note that the liquidity constraint (10) is inactive (µ2 = 0) when τTL is arbitrarily close to 0 and
active (with µ2 > 0) when τTL is arbitrarily close to 1.



Lemma 6. V TL(cTL, τTL) is a continuous and strictly increasing function of τTL on
[

0, τTL
F

]

.

Proof. It is possible to split the value function V TL(cTL, τTL) defined on
[

0, τTL
F

]

into
a function V TL

0
(cTL, τTL) defined on

[

0, τTL
S

]

and a function V1(c
TL, τTL) defined on

]

τTL
S , τTL

F

]

. We can then observe that:

(i) V TL
0

(cTL, τTL) is continuous and strictly increasing in τTL on
[

0, τTL
S

]

:
If 0 < τTL < τTL

S , then µ2 = 0 (see proof of Proposition 2). The maximum-
value function V TL

0
(cTL, τTL) then is continuous and strictly increasing in τTL:

∂V TL
0

/∂τTL = ∂LTL/∂τTL = µ1(1 − cTL)(R − 1) > 0. It follows from Lemma
4 that V TL

0
(cTL, τTL) is defined at τTL = 0 and that limτTL→0 V

TL
0

(cTL, τTL) =
V TL(cTL, 0). It also follows from Proposition 2 that V TL

0
(cTL, τTL) is defined at

τTL = τTL
S and that limε→0 V

TL
0

(cTL, τTL
S − ε) = V TL

0
(cTL, τTL

S ).It then results that
V TL
0

(cTL, τTL) is continuous and strictly increasing in τTL on
[

0, τTL
S

]

.

(ii) V TL
1

(cTL, τTL) is continuous and strictly increasing in τTL on
]

τTL
S , τTL

F

]

:
If τTL

S < τTL < τTL
F , then µ2 > 0 (see proof of Proposition 2). The maximum-value

function V TL
1

(cTL, τTL) then is continuous and strictly monotonous on
]

τTL
S , τTL

F

[

:
∂V TL

1
/∂τTL = ∂LTL/∂τTL = (1 − cTL)[µ1(R − 1) − µ2]. The fact that τTL < τTL

F

implies that ∂V TL
1

/∂τTL > 0. It follows that V TL
1

(cTL, τTL) is [continuous and]
strictly increasing on

]

τTL
S , τTL

F

[

. It also follows from Lemma 5 that V TL
1

(cTL, τTL)
is defined at τTL = τTL

F and that limε→0 V
TL
1

(cTL, τTL
F − ε) = V TL

1
(cTLτTL

F ). It then
results that V TL

1
(cTL, τTL) is continuous and strictly increasing in τTL on

]

τTL
S , τTL

F

]

.

(iii) V TL(cTL, τTL) is continuous and strictly increasing in τTL on
[

0, τTL
F

]

:
If τTL = τTL

S + ε then DTL∗
1

< DTL∗
2

and the liquidity constraint (10) is active (see
proof of Proposition 2): λDTL∗

1
= [1− (τTL

S + ε)](1− cTL). It follows that

lim
ε→0

DTL∗
1

= lim
ε→0

[1− (τTL
S + ε)](1− cTL)

λ
=

(1− cTL)R

1 + λ(R− 1)
= DTL∗. (C.3)

Given that λDTL∗
1

= [1− (τTL
S + ε)](1− cTL), the bank’s budget constraint (9) can

be rewritten as:

DTL∗
2

=
R

1− λ
(τTL

S + ε)(1− cTL). (C.4)

It follows that

lim
ε→0

DTL∗
2

= lim
ε→0

R

1− λ
(τTL

S + ε)(1− cTL) =
(1− cTL)R

1 + λ(R− 1)
= DTL∗. (C.5)

It results from (C.3) and (C.5) that limε→0 V
TL
1

(cTL, τTL
S + ε) = V TL

0
(cTL, τTL

S ).
Given (i) and (ii), this implies that V TL(cTL, τTL) is continuous and strictly in-
creasing on

[

0, τTL
F

]

by connecting V TL
0

(cTL, τTL) and V TL
1

(cTL, τTL) at τTL
S .

It results from the application of the intermediate value theorem that there exists a
single value 0 < τTL < τTL

F such that V TL(cTL, τTL) = u(1) and a single value 0 < τTL <
τTL
F such that V TL(cTL, τTL) = V B(cB, τBF ). Given that V B(cB, τBF ) > u(1) (Lemma 1 in
Appendix A), we finally deduce that τTL > τTL.
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