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Abstract
We present in this work the set of partition efficient anticipations, the PEA, that results from our Proposition 1, an
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1 Introduction

In this work, we are making the first steps into a widely ignored class of coalitional games, TU-games for
short, namely non-cohesive TU-games. For those games, the fundamental concepts like efficiency or feasibility
need to be modified, and the concept of (c-)core does not exist. By introducing the set of partition efficient
anticipations, the PEA for short, we will be able to offer core-like solution points for those games.

Rapoport (1970) formulated two fundamental questions for the theory of TU-games:

1. “Which coalitions are likely to form?”
2. “How will the members of a coalition apportion their joint payoff?”

Most of the literature has been concerned only with the second of these two questions. By presuming that
the “grand coalition” will be formed and the apportionment of the grand coalition’s worth is negotiated among
the players based on criteria consented to in the coalitional agreements, the first of the questions above is
eliminated rather than answered. This presumption is implicit in large parts of the coalitional games literature.
It is indeed optimal to form the grand coalition as long as it provides a total worth that is maximal over all
partitions’ of players aggregate worth. Games with this property are called cohesive by Osborne and Rubinstein
(1994). While for cohesive games the standard notion of efficiency taking the grand coalition’s worth as a
benchmark is justified, it is inadequate and even defective for non-cohesive games. This fact is the main reason
for our interest in an adequate solution concept that is non-empty valued on non-cohesive games. Though the
core, as attractive as it may be, is only a non-feasible utopia here, we need to be content with a solution concept
that is feasible in our more restricted framework, but shares some property or way of foundation with the core
of balanced games.

In the context of balanced families, the players are allowed to be partial members of several coalitions simul-
taneously with some (for every coalition potentially different) fixed degrees of membership for each member.
There, the worth of the coalition is still the classic one, but the way to deal with this is different, in particu-
lar, more flexible and more productive. The part of a coalition’s worth absorbed by its members is the worth
multiplied with the members’ common degree of membership. The sum of the aggregate absorbed worths of
the coalitions’ members is too large to be feasible in a game, unless the game is c-balanced.

As we are working with classic TU-games where an agent’s membership is indivisible Rapoport’s second
question “How will the members of a coalition apportion their joint payoff?” is relevant. Clearly, that question
remains relevant when the membership is divisible. But for us the first question has priority even if it may
finally turn out that a convincing answer can be given only by simultaneously working on both questions. Our
interest in solutions for non-cohesive games is shared by Béal, S, Casajus, A et al (2021)1 for similar reasons.
They also assume Pareto efficiency, “cohesive efficiency” in their terminology, but are dealing with solutions
akin to the Shapley value.

A fundamental role in our analysis is played by the choice of adequate efficiency concepts as the grand
coalition cannot serve as the benchmark for Pareto optimality in non-cohesive games. Classic theory of TU-
games attempts to model situations where a finite set of players cooperates in a precisely specified way in order
to achieve their goals. It is presumed there that any subset of the set of players can by forming a coalition
engage in a binding agreement on joint cooperation according to certain rules. We shall deviate from wide use
of the technical term coalition in the literature in two different mutually contradictory ways: just as any subset
of the set N of all players, but then also as a coalition that a subset S of N may form. We shall distinguish
between all subsets of N called syndicates (of players) and those syndicates that become coalitions (of players)
by signing after preplay negotiations among all players a binding contract to participate in the game (N, v)
and to cooperate obeying the rules of that game. The rules are implicitly described by the coalition function
v which grants any coalition a joint payoff of transferable utils (“money”) called its worth. An example for
violating the rule would be a splitting of a coalition of the game into sub-coalitions in order to receive a
larger joint payoff. Yet, entering the game as coalitions would have been possible for those sub-syndicates. By
distinguishing between syndicates and coalitions we follow Harsanyi (1959) and Rapoport (1970) who wrote
about N : “subsets of this set can form coalitions”, and adopted the term syndicate as a technical term for a
subset of N .

We present notations, concepts, and most of our definitions in Section 2. In Section 3, we deal with the
feasibility and efficiency of payoff vectors in TU-games. In Section 4, we justify for our classic context the use of
partitions as opposed to balanced families on which the use of a TU-game extension is based and we define the

1Béal, S, Casajus, A et al (2021) quoted a first, more extended version of this paper: Aslan et al (2020), Non-cohesive TU-games: Duality
and P-core. Working Paper No.2020-08, Center for International Economics, Paderborn University.



core-analogue solution concept, the PEA. Section 5 discusses the relation with coalition production economies
introduced by Sun et al (2008), extended and simplified by Inoue (2012). Section 6 concludes with a summary
and remarks on future research.

2 Notation and Definitions

A cooperative coalitional game with transferable utility, TU-game for short, is an ordered pair (N, v) where
N = {1, 2, . . . n} represents the set of players and v : 2N −→ R with v(∅) = 0. The coalition function v is
completely described by its restriction to 2N . A subgame (S, vS) of (N, v) is defined by vS := v|2S .

For a non-empty finite set N = {1, ..., n}, RN is an n-dimensional real vector space. For notational simplicity
if x ∈ R

N and S ⊆ N , we write xS := (xi)i∈S . We adopt a frequent convenient abuse of notation from the
literature where x not only denotes a payoff vector but also the additive TU-game that it generates. Thus,
x(S) =

∑

i∈S

xi. The set of all subsets of N is denoted by 2N . We define N := 2N \ {∅}. For any S ⊆ N , the

indicator function ✶S : N → {0, 1} is defined by ✶S(i) = 1 if and only if i ∈ S. A partition π of S ⊆ N is a set
π = {T1, T2, . . . Tm} of pairwise disjoint subsets Ti ⊆ S covering S. The set of partitions of S ⊆ N is denoted
Π(S). A collection ß of non-empty subsets S of N is called balanced if there is a map λ : 2N \ {∅} → R+

satisfying
∑

S∈ß

λ(S)✶S(i) = 1, where λ(S) > 0 for all S ∈ ß. Notice that any partition π of N is a balanced

collection of subsets of N . This fact will play the central role for the foundation of the PEA as the canonical
analogue for the core in non-cohesive games.

By focusing on non-cohesive games we are leaving the classes of super-additive and of balanced games, and
loose access to concepts and solutions developed for these classes. However, we need to define those classes of
games which are excluded from our analysis when focusing on non-cohesive games, where the grand coalition
fails to be efficient.

A TU-game (N, v) is cohesive (or complete) if v(N) = max
π∈Π(N)

∑

T∈π

v(T ). The cohesive hull or completion of

a TU-game (N, v) is the TU-game (N, vc) defined by vc(S) = v(S) for all S ⊂ N and vc(N) = max
π∈Π(N)

∑

T∈π

v(T ).

The TU-game (N, v) is super-additive if v(S) + v(T ) ≤ v(S ∪ T ) for all disjoint S, T ⊆ N . The super-additive
hull of a TU-game (N, v), denoted by (N, ṽ), is the smallest super-additive game (N,w) such that v(S) ≤ w(S)
for all S ⊆ N . Super-additive games are totally cohesive in the sense that all its sub-games are cohesive. For
all S ⊆ N holds ṽ(S) = (vS)

c(S) = max
π∈Π(S)

∑

T∈π

v(T ), and thus ṽ(N) = vc(N) = max
π∈Π(N)

∑

T∈π

v(T ). A TU-game

(N, v) is balanced if for each balanced collection ß of subsets of N and associated system λß = {λ(S)}S∈ß holds:
v(N) ≥

∑

S∈ß

v(S)λ(S). The balanced hull of (N, v) is the TU-game (N, vb) with vb(S) = v(S) for all S ⊂ N

and vb(N) := max
ß∈B

∑

T∈ß

λ(T )v(T ). A TU-game (N, v) is totally balanced if all subgames (S, vS) are balanced.

Neither need balanced games to be super-additive nor super-additive games to be balanced. Both are cohesive,
however. For an arbitrary TU-game (N, v) holds v(N) ≤ vc(N) = ṽ(N) ≤ vb(N).

The concept of the core was introduced by Gillies (1959) via a domination relation for any arbitrary set P of
payoff vectors for a game (N, v). Taking P as either {x ∈ R

N | x(N) ≤ v(N)} or as {x ∈ R
N | x(N) ≤ vc(N)}

one receives Core(N, v) and c−Core(N, v), respectively. The core is defined as Core(N, v) = {x ∈ R
N | x(N) =

v(N), x(S) ≥ v(S) for all S ⊆ N}, and the c-core of a TU-game (N, v) is the core of its cohesive hull, i.e.,
c−Core(N, v) = {x ∈ R

N | x(N) = vc(N), x(S) ≥ v(S) for all S ⊆ N}. A TU-game (N, v) is called c-balanced
if its cohesive hull (N, vc) is a balanced game. It is very well-known that the (c-)core of a TU-game (N, v) is
non-empty if and only if (N, v) is (c-)balanced.

3 Feasibility and Efficiency

The standard version of feasibility and efficiency for TU-games is based on the realization of the grand
coalition. Depending on which feasibility concept is used different types of payoff vectors are considered in the
literature. Bejan and Gómez (2012) discusses three versions of feasibility defined by the following sets:

X(N, v) = {x ∈ R
N | x(N) ≤ v(N)}

XΠ(N, v) = {x ∈ R
N | x(N) ≤ vc(N)}

XΛ(N, v) = {x ∈ R
N | x(N) ≤ vb(N)}

The respective subsets of efficient payoff vectors x are defined by replacing the inequality by equality.



As we want to get rid of the restriction by the worth of the grand coalition, we refute the first efficiency
concept in the list. We also exclude the third feasibility concept that is used for balanced games, as those games
are linear homogeneous game extensions. Formally, one needs to extend the notion of a game from (N, v) to a
pair (N,w) with w : 2N × R+ −→ R such that w(S, t) := tv(S) for any (S, t) ∈ 2N × R+. Depending on the
socio-economic scenario represented by (N, v), this may or may not be a coherent way of defining an extended
TU-game [cf. Shapley and Shubik (1975, Footnote 5)]. Thus, we will work with the second one which is Pareto
efficiency on classic coalitional TU-games and is called cohesive efficiency by Béal, S, Casajus, A et al (2021).
It is only second best in the framework of balanced games or even totally balanced market games (cf. Shapley
and Shubik (1969)).
Definition 1. A payoff vector x for a TU-game (N, v) is called feasible if x is an element of XΠ(N, v) and
efficient if x is an element of X∗

Π(N, v) := argmax
x∈XΠ(N,v)

x(N).

As a consequence of our restriction to classic coalitional TU-games, we will have in our application of the
Duality Theorem of Linear Optimization to replace the class of balanced collections which play a fundamental
role in the Bondareva-Shapley Theorem by its subclass, the set Π(N) of partitions of N . As we shall prove
in Section 4 the worth vc(N) results from our dual linear program for non-cohesive games (N, v). There the
feasibility is defined by what partitions of the player set N can possibly achieve. Their aggregate worth is
maximized, rather than the worth v(N) - the “benchmark” for efficiency.

4 The set PEA(N, v)

In their Chapter 13 on “The core”, Osborne and Rubinstein (1994) wrote:

“Throughout this chapter and the next we assume that the coalition games with transferable payoff
that we study have the property that the worth of the coalition N of all players is at least as large
as the sum of the worths of any partition of N . This assumption assures that it is optimal that the
coalition of all players form(s),as is required by our interpretations of the solution concepts we study
(though the formal analysis is meaningful without the assumption).”

This assumption makes their considered games cohesive as we defined it in our Section 2.
Cohesive games and even super-additive games may well have empty cores, but every TU-game with a non-

empty core is necessarily cohesive. This follows from the Bondareva-Shapley Theorem that confirms the identity
of balanced TU-games and TU-games with non-empty cores (cf. Myerson (1991)). In some cases a game (N, v)
is not balanced, but the cohesive hull (N, vc) may be balanced, hence (N, vc) has then a non-empty core that
is the c-core of (N, v). The game (N, v) is then c-balanced (cf. Sun et al (2008)).

We confine ourselves to analyze non-cohesive, hence non-balanced games. In particular, we want to provide
a natural non-empty analogue for the the (c-)core whenever it is empty. Therefore, we shall mimic the two
dual linear programs employed by Myerson (1991) in his treatment of the Bondareva-Shapley Theorem. We
will do that by extending in the primal linear program the minimizing over all subsets S of N to one over all
efficient partitions of N having S as a component. That decreases the minimum value. For this new primal
minimization program we formulate its dual linear maximization program that necessarily leads to a decrease
of the same magnitude of the maximal value as compared to Myerson’s dual maximization problem.

The Duality Theorem of Linear Optimization asserts equality of the optimal values of the following opti-
mization problems which are taken from Myerson (1991).

(9.2) min
x∈RN

x(N) subject to for all S ∈ N , x(S) ≥ v(S)

(9.3) max
µ∈R

N
+

∑

S⊆N

µ(S)v(S) subject to for all i ∈ N ,
∑

S⊆N :i∈S

µ(S) = 1

Hence, for the respective optimizers x∗ and µ∗ one gets x∗(N) = vb(N). But that cannot be achieved for
non-c-balanced games. An aggregate payoff x(N) = vb(N) could be possibly achieved in a non-cohesive games
(N, v) only via simultaneous partial memberships of players in various coalitions. If this is the case, then the
secured payoff to be allocated to each syndicate T is at least as large as its entitled worth v(T ).

In order to get a smaller “budget” available for the payoffs, we guarantee only the worth of those syndicates
who take part in the game (N, v) as coalitions. In other words, in order to reach a smaller value as the optimal
value, we first need to weaken the restrictions in (9.2) that x(S) ≥ v(S) holds for all syndicates S.



Then for the dual problem the maximum value has to become smaller, too, so that we have to restrict the
class of balanced families of weights.

We introduce now for an arbitrary game (N, v) special subsets of the set Π(N) of partitions: the set of efficient
partitions of N is Π∗(N) := argmax

π∈Π(N)

v(π) where v(π) :=
∑

T∈π v(T ), the set of partitions of N containing S as

a component is ΠS(N), and the efficient partitions of N having S as a member is Π∗
S(N) := Π∗(N) ∩ΠS(N).

Take any π∗
S ∈ Π∗

S(N) for a coalition S with v(π∗
S) = vc(N). The aggregate payoff x(N) should be big

enough to guarantee to any coalition T in such a partition π∗
S the worth (vT )

c(T ) = ṽ(T ). Notice that we are
dealing here only with formed partitions with all components being (built) coalitions. Only one such partition
can finally have that status of having entered the game. All other non-built partitions and all other syndicates
remain disregarded. To do so (P) is designed as an analogue of (9.2) to guarantee the payoffs to the coalitions,
but not to all syndicates. (D) is the dual maximization problem of (P).

(P) min
x∈RN

x(N) subject to for all S ∈ N , x(N) ≥ v(πS)

(D) max
y∈R

N
+

∑

S⊆N

y(S)v(πS) subject to
∑

S⊆N

y(S) = 1

Let x∗ and y∗ be optimizers of these dual problems, respectively. By the Duality Theorem of Linear
Optimization, the optimal values of the dual programs are identical. The optimizers y∗ in problem (D) are
those probabilities y∗ that put positive mass only on those S with π∗

S ∈ Π∗
S(N). Among them are all

Dirac measures δS = ✶{S} with y∗(S) = δS(S) = ✶{S}(S) = 1. Thus, all partitions π∗
S ∈ Π∗

S(N) satisfy
v(π∗

S) = ṽ(N) = vc(N) = x∗(N). This completes the proof of the following analogue of the relation between
the dual programs (9.2), (9.3) and the balanced hull vb.
Proposition 1. The joint optimal value of the dual linear programs (P) and (D) is the worth of the grand
coalition N in the cohesive hull vc, that is x∗(N) = vc(N).

Obviously, any optimal x∗ is Pareto efficient in (N, v). We call all optimal partitions of N resulting from
(P) and (D) efficient partitions in (N, v), i.e., a partition of N is efficient if its aggregate worth is vc(N). A
Pareto efficient vector x is partition efficient if x(S) = v(S)(= ṽ(S)) for each component S of some efficient
partition of N . Although the partition efficient vectors x of (N, v) are not aspirations2, they are distinguished
anticipations.
Definition 2. For any TU-game (N, v), the set of partition efficient anticipations is defined as

PEA(N, v) = {x ∈ R
N | ∃ π∗ ∈ Π∗(N) s.t. x(S) = v(S)(= ṽ(S)) ∀ S ∈ π∗}.

Remark 1. It is a consequence of Proposition 1 that for any TU-game (N, v), the set PEA(N, v) is non-empty.
Notice that PEA(N, v) plays in non-cohesive games a completely analogous role for (N, v), vc(N), (P ) and

(D) to that of Core(N, vb) in cohesive games for (N, vb), vb(N), (9.2) and (9.3).
We intentionally chose the dual linear programs (P) and (D) in order to reveal the PEA as a natural core-

analogue for non-cohesive TU-games. Clearly, the renunciation of the absolute power of the grand coalition
and of the flexibility of multiple coalition building has its price. We cannot just use the attractive core concept
in game theoretic environments where it does not exist. A closer look at the non-cohesive TU-games shows
that both are reducible to the much more transparent equivalent formulations (Pπ) and (Dπ):

(Pπ) min
x∈RN

x(N) subject to for all S ∈ N , x(N) ≥ ṽ(S) + ṽ(N \ S)

⇔ min
x∈RN

x(N) subject to x(N) ≥ vc(N).

As the restriction “subject to for all i ∈ N,
∑

S∈N
✶π(S)✶S(i) = 1” is trivially satisfied (non-binding), we get

(Dπ) max
π∈Π(N)

∑

S∈N
✶π(S)v(S) = max

π∈Π(N)

∑

S∈π

v(S).

2An aspiration is a special kind of anticipation, which is a payoff vector x such that for all i ∈ N , there exists some S ⊆ N containing
i with x(S) ≤ v(S). An aspiration x ∈ R

N for a TU-game (N, v) is an anticipation such that x(S) ≥ v(S) for each syndicate S ⊆ N [cf.
Bennett (1983)].



5 A relation to TU market games

Based on the earlier works of Shapley (1953) and Shubik (1959), TU-market games are introduced by Shapley
and Shubik (1969) and characterized as being identical with totally balanced TU-games. In their follow-up on
market games, Shapley and Shubik (1975) analysed the relation between payoff vectors in the core of a TU-
game and their representation of competitive equilibria3 in the markets inducing this game. Later on, the class
of TU-market games is extended to include other games induced by or representing various market models or
economies. Garratt and Qin (1996, 1997, 2000) introduced market models that can be represented by super-
additive games [see also Bejan and Gómez (2017)]. Sun et al (2008) defined a coalition production economy that
is induced by an arbitrary TU-game, for which the equivalence between the c-core and the utility allocation of
competitive equilibria of the induced economy is established. Inoue (2012) simplified this model by reducing the
number of output commodities to just one (“money”) allowing two versions, one with divisible and one with
indivisible labor input of agents. These two models allow or exclude, respectively, multiple jobbing of agents,
i.e., allocating their available labor time to several coalitions. This gives players the opportunity to organize
themselves in balanced families of syndicates rather than in partitions into various coalitions. Therefore, only
the “single jobbing” model of Inoue (2012) is adequate for representing the TU-games in our framework.

While the explanation of coalition-building via competitive equilibria of a represented coalition production
economy is only possible if the game is at least c-balanced [cf. Sun et al (2008)], that is still possible for
arbitrary TU-games via efficiency properties. The efficient self-organization of the players into coalitions that
are efficient in the production process is compatible with our framework that distinguishes syndicates from
coalitions, efficient coalitions from inefficient ones, and efficient from inefficient coalition structures. We will
focus now on the single jobbing model. For an elaborate interpretation and technical details, we refer to the
short article by Inoue (2012).

Like in Shapley-Shubik markets, each player of the representing TU-game is endowed with one indivisible
unit of an idiosyncratic good, her “labor time”. Each coalition S has a technology by which it can produce
tv(S) for t ≥ 0 if each member of S provides t percent of its input good labor. Indivisibility implies for each
player, t to be either 0 or 1. So, the coalition is built if its production set is activated by all members of S
providing their full endowments.

This is also the case if the considered game is a market game. As Shapley and Shubik (1975) remarked,
the competitive payoff vectors of (N, v) are exactly those maximizing the players’ aggregate utility that equals
vc(N) = ṽ(N). If the “right” coalitions build, they form a partition π of N that produces in total the amount∑

T∈π v(T ) = vc(N) = ṽ(N). For any TU-game (N, v), there exists such an economy Ev
4.5

By Inoue (2012), we know that any TU-game can be generated by Ev, but we do not know what we can
say beyond the efficiency if the game is not a c-balanced game. Proposition 2 gives a clue about efficiency in
non-c-balanced games, whose straightforward proof is left to the reader.
Proposition 2. The maximal output of Ev can be produced only by any vector x ∈ PEA(N, v) and equals
x(N) = vc(N) = ṽ(N). All active firms are components of the same efficient partition of N underlying that
x ∈ PEA(N, v).

6 Concluding Remarks

Our analysis of classic TU-games in this paper is based on Pareto efficiency with the aggregate worth of the
most productive coalition structures as a benchmark for feasibility. Thereby, we deviated from the in large
parts of the TU-literature prevalent “second best” efficiency concept based on the restriction that the grand
coalition’s worth is maximal among all coalitions’ aggregate worths. However, these two concepts coincide on
the class of cohesive games. Still, our more general concept does not satisfactorily cover all games in all of
their aspects and interpretations as we have focused like most of the TU-literature on those class of coalitional
TU-games where payoffs are interpreted as utilities (“profit games”) rather than as dis-utilities (“loss games”).

This distinction is sometimes confused with that between games with positive versus those with negative
payoffs. The definition of the anti-core of a TU-game in Oishi, T, Nakayama, M et al (2016), for instance, by
just reverting the inequalities in the definition of the core, contrasts strongly with Maschler et al (2013) who

3A competitive equilibrium (or Walrasian equilibrium) is a pair (p,X), where p is a vector of commodity prices and X a matrix whose
columns represent commodity bundles in the agents’ excess demand sets at p such that markets clear, i.e., pX = 0.

4A coalition production economy E with n agents is described by a commodity space, the agents’ characteristics and the coalitions’
production sets satisfying some desired properties. We denote the economy generating the TU-game (N, v) by Ev . For the details please
see Inoue (2012).

5Notice that several coalition structures π ∈ Π(N) may be able to produce the aggregate amount vc(N).



denote in cost games that anti-core also as core and revert the inequality in the definition of super-additive for
cost-games while still calling it super-additive.

The signs of positive- or negative-valued games can always be reverted by transitions to suitable strategically
equivalent games. And technically maximization or minimization problems are anyway mathematically equiv-
alent and only depend on the sign conventions. Nevertheless, a convention may be chosen in order to represent
more obviously certain features of the underlying socio-economic environment modeled by the TU-game.

As to further future research, therefore, we think of a more comprehensive analysis of TU-games, including
goods and bads or allowing simultaneous treatment of pairs of dual games. That would require an adequate
more general efficiency concept. A very promising candidate under this aspect could be a modification of the
excess Pareto optimality introduced by Derks et al (2014) though in a cohesive games framework.
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