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Abstract
Stablecoins rely on secondary market arbitrage to maintain price stability. This paper provides novel evidence about

the peg mechanism of the largest stablecoin, Tether. Time-varying estimates of Tether points and speed of

convergence of price deviation suggest the arbitrage mechanism has been increasingly effective at maintaining price

stability. However, the state of the cryptocurrency market, convertibility, and advances in blockchain technology play

an important role in Tether's price stability.

I thank John Conley (editor), three anonymous referees, and Tiezheng Song for their thoughtful comments and suggestions. All remaining errors

are my own. 

Citation: Huachen Li, (2022) ''Tether points, price stability, and arbitrage efficiency'', Economics Bulletin, Volume 42, Issue 4, pages 2193-

2199

Contact: Huachen Li - li8@kenyon.edu.

Submitted: October 19, 2021.   Published: December 30, 2022.

 

   



1. Introduction

Following the boom of the cryptocurrency market, stablecoins have gained much at-
tention by investors, regulators, and researchers. As the largest stablecoin by market capi-
talization, Tether (USDT) is designed to be pegged at a 1:1 exchange rate to the U.S. Dollar
(USD). Although Tether is issued by a centralized issuer (Tether Limited, TL henceforth),
the peg relies on arbitrage in the secondary market. When Tether trades at a premium
(discount), arbitrageurs buy (sell) Tether at the parity rate from TL and sell (buy) Tether in
the secondary market. This exerts downward (upward) pressure to Tether price towards
the parity. Transaction costs and market risks entail a bound of Tether prices over which
arbitrage would commence, i.e., Tether arbitrage only takes place when price sufficiently
deviates from the peg. I refer to this threshold as the “Tether point”.

This paper examines stablecoin arbitrage efficiency and its effect on price stability us-
ing Tether data. I ask (i) what are the prevailing Tether points, (ii) how efficient is the
Tether market as measured by the speed of price deviation adjustment, and (iii) what
factors affect Tether’s arbitrage efficiency.

I answer these questions by estimating a rolling window band-threshold Autoregres-
sive (Band-TAR) model using daily data on Tether prices. This model simultaneously
captures the evolution of convergence (i.e., Tether points) and efficiency (i.e., the speed at
which excessive price reverts). Following Canjels et al. (2004) and Li (2015), the baseline
model is a restricted TAR with symmetric thresholds, which implies an optimal arbitrage
model. Results from generalized reduced-form models are also provided as a robustness
exercise.

Substantial improvement in Tether’s market integration and arbitrage efficiency are
found. The full sample estimate of Tether point is 0.23%, but the rolling window results
suggest Tether point peaks in 2017 and declines since. This correlates with concerns re-
garding TL’s alleged insolvency and Bitcoin price manipulation scandal in 2017Q4. Sim-
ilarly, the half-life of excessive price reversion decreases from 6 days in 2018 to about 1
day in 2020. Migration to advanced blockchain technology and restoration of investor
confidence are linked to increase in arbitrage efficiency and hence price stability.

To the best of my knowledge, this paper is the first to empirically document the ar-
bitrage mechanism of a stablecoin. Novel time-varying evidence about Tether points
and price convergence provides an explanation for volatility in stablecoin prices. These
findings contribute to a developing literature on stablecoins (for example, Lyons and
Viswanath-Natraj 2020) and present a challenge to the literature that assumes Tether par-
ity always holds (Wei 2018, Baur and Hoang 2020, among others).

2. Background and Data

Tether’s popularity arises as a low-volatility medium of exchange between crypto- and
fiat-currencies. To achieve price stability, TL guarantees convertibility at the 1:1 rate by
collateralization of one USD per circulated Tether. Define peg deviation xt ≡ (pt−1)×100,
where pt is Tether price in USD. Figure 1 plots xt from 4/1/2017 to 11/1/2020 using



Fig. 1. Tether Peg Deviation

Notes: Daily sample is from 2017/04/01 to 2020/11/01. X-axis: sample date; y-axis: percent change.
Source: Coinmarketcap API.

data from Coinmarketcap’s API.1 The largest sample deviations are 7.79% above peg and
8.64% below peg. On average, Tether trades at a premium of 0.16% with a standard
deviation of 1.10%. Visual inspection and unit root tests suggest xt is observationally
equivalent to an I(0) series.

Figure 1 suggests comovement between peg deviation and state of the cryptocurrency
market. For example, claims about TL’s insolvency in April 2017 and November 2018 and
Bitcoin price manipulation (Wei 2018) correspond to large discounts in Tether price. Sim-
ilarly, Bitfinex’s service discontinuation to U.S. customers and the recent crypto market
crash of March 2020 also link to sizable fluctuations in Tether price. These observations
suggest disruptions to the cryptocurrency market could affect Tether’s arbitrage mecha-
nism. Thus, documenting the efficiency of Tether’s arbitrage mechanism sheds light on
the degree of Tether price stability and its functionality as a stablecoin.

3. Model and Results

3.1. Restricted TAR

Consider the following specification

∆xt =











−λ(xt−1 − γ) + ǫOt when xt−1 > γ

ǫIt when |xt−1| ≤ γ

−λ(xt−1 + γ) + ǫOt when xt−1 < −γ

, (1)

1Daily trading volume of USDT consistently surpasses $10M after 4/1/2017. Note low volume may
induce excessive price volatility.



where ∆ denotes the first-difference operator, ǫOt ∼ N(0, σ2

O), and ǫIt ∼ N(0, σ2

I ). The
symmetric threshold [−γ, γ] is labeled as Tether points. Arbitrage is profitable when
|x| − γ > 0, i.e., when marginal revenue of arbitrage exceeds marginal cost. Arbitrage
flow drives the peg deviation towards the nearest γ at a speed of convergence λ, which
measures the fraction of peg deviation adjustment in one day.

Peg deviation is assumed to follow a driftless random walk within Tether points. This
is equivalent to no reversion to parity in the middle regime. Heteroskedasticity across
regimes is allowed by differentiating the stochastic white noise processes when peg devi-
ation is inside (ǫIt ) and outside (ǫOt ) the thresholds.

The model is estimated using conditional least squares of the following steps: (i) run
OLS regression of each regime given values of γ, and (ii) conduct a grid search on γ that
minimizes the sum of squared residuals of the model. I set a 15% trimming sample for the
grid search with a coarseness of 0.001.2 This results in a dense grid of about one million
grid points given the sample size.

First, I estimate (1) with the entire sample. The 15% trimming is equivalent to the re-
striction that Tether points fall within the interval of [4.26e−5, 0.99]. The estimated thresh-
old coefficient γ is 0.23. This suggests arbitrage flow begins to work as a price stabilization
mechanism when the price deviates more than 23 basis points from parity. Thus, Tether’s
arbitrage-based peg is, on average, effective as the sample average peg deviation of 0.16%
is well within the estimated Tether points.

Exploitable arbitrage opportunities arise frequently. Tether trades at a premium in
the upper regime for 585 days and at a discount in the lower regime for 195 days. This
leaves the middle regime with 531 days, or 40.5% of the sample. However, these arbitrage
opportunities are short-lived. The estimated λ is 0.1834 with a standard error of 0.0169,
which corresponds to a half-life of price convergence of 3.42 days.3 About 75% of the
price deviation in the upper or lower regimes diminishes within a week.

Next, as discussed in Section 2, a natural question is whether or not Tether price sta-
bility and arbitrage efficiency evolve over time. I extend the exercise to estimate (1) on a
rolling window of fixed length.4 Figure 2 plots the rolling window estimates in solid blue
line and 90% confidence bands in dotted red lines. First, the estimated γ (upper panel)
increases in early samples and peaks during the September 2018-2019 sample at 29 basis
points. The peak corresponds to a period of low investor confidence when Tether was
subpoenaed by the U.S. Commodity Futures Trading Commission for alleged insolvency.
Estimated γ declines and reaches the lowest estimate towards the end of the sample as
Tether weathered through the crisis. These results are evidence that γ comoves with the

2The TAR literature suggests trimming values of 5% to 15%. See, for example, Canjels et al. (2004).
Different trimming values do not qualitatively alter the results of this paper. Appendix B provides more
details on estimation.

3The half-life of price convergence, i.e., the number of days for the peg deviation to revert half way to

the closest Tether point, is computed as λ̃ =
ln(0.5)
ln(1−λ) .

4I explore different window sizes between 180 to 540 and settled with 360 observations. This results in
950 rolling window estimates beginning from the sample [4/1/2017, 3/26/2018] and ending at [11/9/2019,
11/1/2020]. Shorter or longer window sizes do not alter the qualitative findings of the exercise. Note a
longer window smooths out the trends while a shorter window is sensitive to changes in the data. As
suggested by a reviewer, I also report estimates of a time-varying threshold model in Appendix C as a
robustness check.



Fig. 2. Rolling Window Restricted TAR Estimates

Notes: Rolling window estimates (blue solid line) and 90% confidence bands (red dotted lines) of the thresh-
old coefficient γ and the half-life of price convergence are plotted. The rolling window size is 360. Half-life

is computed as λ̃ =
ln(0.5)
ln(1−λ) . The sample period is 4/1/2017 to 11/1/2020. X-axis: Rolling window sample

range; y-axis: percentage points (γ) and number of days (half-life).



Fig. 3. Share of Tether in Circulation

Notes: The figure plots Tether per blockchain (Omni in blue, Ethereum in orange, and Tron in gray) as a
fraction of total Tether in circulation. The sample period is 4/1/2017 to 11/1/2020. X-axis: sample dates;
y-axis: supply share as a fraction.
Source: Coinmetrics API.

perceived state of Tether.
The lower panel of Figure 2 displays substantial time variation in the half-life of ex-

cessive price convergence. The U-shaped movement in the early sample around 2017Q4
has a trough of 2 days. Note a similar trough of γ can be observed around the same time,
which correlates with the peak of cryptocurrency bubble of 2017. Following the 2018
crypto market crash and doubts about Tether’s insolvency, the half-life slows down by
threefold and peaks at over six days in the 2018-2019 samples. These estimates signifi-
cantly improve during the cryptocurrency boom in 2019 and settle at around one day in
the late sample.

Adoption of new blockchain technology also appears to be important for the decline
of half-life. Originally issued on the Omni blockchain, Tether’s migration to Ethereum
(ERC-20) and Tron (TRC-20) improved arbitrage efficiency because these protocols have
faster withdrawal confirmations, among other technological improvements.5 Figure 3
plots Tether per blockchain as a fraction of total supply. The sharp increase of Tether on
Ethereum and Tron since May 2019 reinforces these findings.

In sum, implications of the restricted TAR results are threefold. First, economically
meaningful time variation in γ and the half-life suggest the state of Tether’s solvency
matters for both coefficients, but speed of adjustment is more volatile than the estimated
Tether points. Second, boom and busts of the cryptocurrency market affect Tether points
and half-life in a similar fashion. A crypto-market boom (bust) corresponds to lower
(higher) Tether points and a shorter (longer) half-life of price adjustment. Third, techno-
logical advances in blockchain promote arbitrage efficiency and hence reduce Tether price

5The average expected block time for Omni, Ethereum, and Tron protocols are 10 minutes, 19 seconds,
and 15 seconds. Block time is the time required to create a new block in a blockchain, i.e., time required to
confirm a transaction.



volatility.

3.2. Unrestricted TAR

As a robustness test, I generalized the previous model to two pth order TAR models
with R regimes and a delay parameter d,

xt =
R
∑

j=1

(β0,j +

p
∑

i=1

βp,jxt−i + ǫt,j)I(γj, xt−d), (2)

where β0,j is the constant, βp,j represents the regression coefficients on the lags of xt, ǫt,j
denotes the region specific error terms, and I(γj, xt−d) = I(γj−1 < xt−d < γj) is an indi-
cator function that is equal to one if xt−d is within the jth region. A series of TAR models
are estimated with R ≤ 3, 1 ≤ p ≤ 30, 1 ≤ d ≤ p, and a 15% trim to be consistent with
the baseline model. A TAR(3, 2, 1) is selected as the optimal model following the advice
of AIC and BIC.

I first report results from a TAR(3, 2, 1) with asymmetric threshold and speed of ad-
justment.6 The estimated Tether points are [-0.27%, 0.49%] for the entire sample. This
is similar to estimates of the restricted TAR. A larger upper regime γu estimate indicates
arbitrageurs require a higher return when the peg deviates positively. This also results in
a larger number of samples in the middle regime.

The speed of price adjustment is allowed to be regime dependent. In the upper regime,
the estimated β1 and β2 are 0.31 with 1% significance. This translates to a half-life of price
convergence in the upper regime of 1.45 days. For the lower regime, the estimate of β1

is 0.85 at 1% confidence level, but β2 is not accurately estimated. This suggests the half-
life in the lower regime is between 4.27 days and 16.98 days. Thus, the average half-life
approximates the baseline estimate of 3.4 days, but price deviations converge faster in the
upper regime.

The asymmetry of the convergence speed between regimes could be attributed to the
design of the arbitrage mechanism. When Tether trades at a premium, TL can purchase
and issue new Tether using its own liquidity and sell in the secondary market. In contrast,
TL cannot reverse the arbitrage when Tether is trading at a discount. This is because
arbitrageurs are to purchase Tether in the secondary market and redeem USD at peg from
TL. Thus, asymmetric participation between the regimes could result in the estimated
differences in arbitrage efficiency.

Finally, a TAR(3, 2, 1) with symmetric threshold and speed of convergence suggests a
threshold estimate of 0.20 and half-life of price convergence of 4.6 days. These estimates
are qualitatively and quantitatively similar to those of the restricted model. Thus, esti-
mates from both flexible unrestricted TARs are generally in line with the restricted TAR,
with the exception of the larger upper regime threshold.

6Appendix D reports additional estimates of the generalized TAR models.



4. Concluding Remarks

This paper empirically documents the price stability and market efficiency of Tether,
the largest stablecoin since 2017. Threshold autoregression models produce economically
meaningful results about Tether points and the evolution of market efficiency. The find-
ings are (i) exploitable arbitrage opportunities are frequent and can account for up to 60%
of the sample, (ii) these arbitrage opportunities diminish quickly as the half-life of exces-
sive price convergence averages about 4 days, and (iii) significant time variation exists in
the estimated threshold and speed of convergence.

Tether’s mechanism to maintain price stability through arbitrage has been effective,
but the efficiency depends on the state of the cryptocurrency market and improvement in
blockchain technology. This paper sheds light on three factors that keep the peg of stable-
coin stable: conversion credibility, blockchain technology, and state of the cryptocurrency
market. As stablecoins become a vital part of the cryptocurrency market, these factors are
important to optimal stablecoin design. Quantifying the effect of these factors on price
stability is another important question which I leave for future research.
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