
1 Introduction

There has been considerable debate on whether government regulations and firms’ efforts to
protect the environment harm or benefit firms. A traditional view is that tighter environ-
mental policies impose significant costs on firms and thereby have negative impacts on their
productivity and competitiveness. This suggests resistance to environmental regulations
from interest groups that represent a polluting industry’s benefits. However, according to
the literature, there is some evidence that industry interest groups do not necessarily oppose,
or may even support, strict environmental policies.1 In fact, there are an increasing number
of firms and industries that actively work on environmental protection and conservation to
practice corporate social responsibility.2

An economic explanation for why stricter environmental regulation can benefit firms
can be found in the “Porter hypothesis”, which claims that “well-designed environmental
regulations might lead to improved competitiveness” (Porter and van der Linde, 1995, p.115).
The basic idea is that properly designed environmental regulation may spur technological
innovation, the benefits from which can offset the additional regulatory costs. A considerable
number of studies have identified more detailed mechanisms that cause the Porter hypothesis
and have also examined the empirical validity of the hypothesis.3

This article presents another channel, namely, a general equilibrium effect, whereby
tighter environmental policy may have a beneficial effect on polluting firms. For this pur-
pose, we develop a simple model of general oligopolistic equilibrium (GOLE) in which firms
are large in their own markets but small in the economy as a whole (Neary, 2003).4 Un-
like conventional oligopoly models, factor prices are endogenously determined in the GOLE
model, and we show that this general equilibrium response in the factor market works in
the opposite direction as the environmental policy on the firms’ production costs.5 Some
sectors experience the general equilibrium effect offsetting the increase in regulatory costs,
and thus, production is enhanced. We identify which industries can be such ones. We also
show that despite the possibility of stricter environmental policy enhancing production in
some industries, the total pollution in the economy unambiguously decreases.

1See Kelsey (2018) and the references therein.
2See, for example, Kolk (2016).
3See Ambec et al. (2013) and Dechezleprêtre and Sato (2017) for a survey of the literature.
4See Colacicco (2015) for a survey of the GOLE literature. Colacicco (2021) introduces transboundary

pollution into a two-country GOLE model and analyzes optimal environmental policies.
5The general equilibrium response of factor prices to environmental policy has already been discussed in

the literature, using the framework of perfect competition. From the seminal work by Yohe (1979) to recent
studies of Fullerton and Heutel (2007, 2010), the literature focuses on the difference in factor intensities
and elasticity of substitution across sectors. However, the competitive models assume constant-returns
technology, and thus, firms earn zero profit, meaning that the effect of environmental regulation on firms’
profitability cannot be examined. There are also studies using general equilibrium models of monopolistic
competition with firm heterogeneity, including Egger et al. (2021). However, this line of research focuses
on the technology difference among firms within an industry rather than the technology difference across
industries, as we do in this paper.



2 The model

We consider a closed economy in which there is a continuum of industries in a unit interval. In
each industry z ∈ [0, 1], there are n(z) firms producing a homogeneous product by employing
labor as a single factor of production. The production process generates pollution, which
can be mitigated by firms’ pollution abatement activities.

The preferences of a representative consumer are represented by the following utility
function:

u =

∫ 1

0

[
a− b

2
x(z)

]
x(z)dz −D(E), a, b > 0, (1)

where x(z) denotes the consumption of good z ∈ [0, 1] and D(E) is the damage from total
pollution E with D′ > 0. The consumer maximizes his/her utility subject to the budget

constraint
∫ 1

0
p(z)x(z)dz = I, where p(z) denotes the price of good z and I is the consumer’s

income.6 The first-order condition for utility maximization yields the inverse demand func-
tions

p(z) =
1

λ
[a− bx(z)] , (2)

where

λ =
a
∫ 1

0
p(z)dz − bI∫ 1

0
p(z)2dz

denotes the marginal utility of income.
In each industry, all firms in the economy share an identical technology represented by a

linear production function yi(z) = li(z)/α(z), where yi(z) and li(z) denote the output and
employment of firm i in sector z, i = 1, . . . , n(z), and α(z) is the unit labor requirement in
sector z ∈ [0, 1]. Each firm in industry z emits pollution ei(z) = ϵi(z)yi(z), where ϵi(z) is firm
i’s emission coefficient, which is inversely dependent on the firm’s pollution abatement level,
ri(z), that is, ϵi(z) = ϵ̄/ri(z), ϵ̄ > 0. The abatement activity incurs costs, and following
Kennedy (1994), the per-unit abatement cost is given by β(z)ri(z), where the higher the
value of β(z) is, the less advanced abatement technology the industry has.7

Pollution emissions are controlled by a national government that implements a pollution
tax policy. We denote the pollution tax rate per unit of emission by t. Then, the profit of
firm i in industry z is given by πi(z) = p(z)yi(z)− wli(z)− tei(z)− β(z)ri(z)yi(z), where w
denotes the wage. Given the specifications concerning demand, employment, and pollution
emissions, profits can be rewritten as8

πi(z) =

a− b

n(z)∑
j=1

yj(z)− wα(z)− t
ϵ̄

ri(z)
− β(z)ri(z)

 yi(z). (3)

6The consumer takes the environmental damage as given when he/she determines demand for goods.
7The abatement activities are assumed to use a specific factor (e.g., knowledge or skilled labor specific to

each industry). Thus, we can interpret β(z) as reflecting the price of the specific factor in industry z.
8As discussed in Neary (2003), this model has one degree of freedom in solving for nominal variables,

which means that we can choose an arbitrary numéraire without affecting the model’s properties. Thus, we
choose the marginal utility of income as the numéraire; λ = 1.



Since we are considering a continuum of industries, firms are large and thus have high
market power in their own markets but small in the economy as a whole, meaning that they
take the wage as given. Each firm determines its output yi(z) as a Cournot oligopolist and
chooses its abatement level ri(z). The first-order conditions are

∂πi(z)

∂yi(z)
= a− b

n(z)∑
j=1

yj(z)− wα(z)− t
ϵ̄

ri(z)
− β(z)ri(z)− byi(z) ≤ 0, (4)

∂πi(z)

∂ri(z)
=

[
t

ϵ̄

ri(z)2
− β(z)

]
yi(z) ≤ 0. (5)

Since we assume firms with identical technology in each sector, we focus on the symmetric
equilibrium in which all firms choose the same levels of output and abatement within the
sector and thus denote yi(z) = y(z) and ri(z) = r(z) for all z ∈ [0, 1]. By also assuming that
the parameters satisfy the conditions for interior solutions, we can rewrite the first-order
conditions (4) and (5) as9

a− b [n(z) + 1] y(z)− wα(z)− t
ϵ̄

r(z)
− β(z)r(z) = 0, (6)

t
ϵ̄

r(z)2
− β(z) = 0. (7)

From (7), the abatement level of each firm in industry z can be derived as

r(z) =

√
tϵ̄

β(z)
. (8)

Clearly, an increase in the pollution tax rate, t, enhances pollution abatement per firm.
Moreover, an industry with more efficient abatement technology (i.e., a smaller β(z)) has
more abatement per firm.

By substituting (8) into (6) and solving for y(z), the Cournot–Nash equilibrium output
of each firm in industry z can be derived as follows:

y(z) =
a− wα(z)− 2

√
tϵ̄β(z)

b [n(z) + 1]
. (9)

The equilibrium output depends not only on t but also on w; both have a negative effect on
y(z). In addition, an industry with more efficient production or abatement technology (i.e.,
a smaller α(z) and β(z)) has more output per firm.

From (3), (8), and (9), the equilibrium profit of each firm is

π(z) =

[
a− wα(z)− 2

√
tϵ̄β(z)

]2
b [n(z) + 1]2

= by(z)2. (10)

9It is clear that for any t, ϵ̄, β(z) > 0, there exists r(z) > 0 that satisfies (7). In light of (8), the condition
for y(z) > 0 that satisfies (6) is a−wα(z)− 2

√
tϵ̄β(z) > 0. This condition can be fulfilled if, for example, a

is sufficiently large.



Thus, the properties of the equilibrium profit follow those of the equilibrium output.
From (8) and (9), the emission level per firm in industry z is

e(z) =
ϵ̄

r(z)
y(z) =

√
ϵ̄β(z)

t
[a− wα(z)]− 2ϵ̄β(z)

b [n(z) + 1]
. (11)

Since each firm’s emissions are linearly dependent on output, e(z) is negatively dependent
on t, w, and α(z).10

Total pollution in this economy is

E =

∫ 1

0

n(z)e(z)dz =

∫ 1

0

n(z)

b [n(z) + 1]

{√
ϵ̄β(z)

t
[a− wα(z)]− 2ϵ̄β(z)

}
dz, (12)

which is negatively dependent on t and w.

3 General equilibrium effects of environmental policy

We have considered the equilibrium in the product markets for a given wage rate w, which
should be determined endogenously in general equilibrium. To determine w, the labor-
market clearing condition should be considered. Let us denote the labor endowment in
this economy by L. Since the labor demand in industry z is equal to n(z)α(z)y(z), the
labor-market clearing condition is given by∫ 1

0

n(z)α(z)y(z)dz = L. (13)

By substituting (9) into (13) and solving for w, it follows that

w =

∫ 1

0
ν(z)α(z)

[
a− 2

√
tϵ̄β(z)

]
dz − L∫ 1

0
ν(z)α(z)2dz

, (14)

where ν(z) ≡ n(z)/ {b [n(z) + 1]}. It is easily verified that w is decreasing in t. Intuitively,
for a given wage rate, an increase in t reduces firms’ outputs in all industries as well as labor
demand, which leads to an inward shift in the labor demand curve, thereby reducing the
equilibrium wage.

We are now in a position to examine the general equilibrium effect of the pollution tax
on the firms’ outputs and profits. From (9) and (14),

dy(z)

dt
=

∂y(z)

∂w

dw

dt
+

∂y(z)

∂t
=

√
ϵ̄/t

b [n(z) + 1]

{
α(z)

∫ 1

0
ν(z)α(z)

√
β(z)dz√

β(z)
∫ 1

0
ν(z)α(z)2dz

− 1

}
. (15)

Thus, the following proposition can be obtained.

10The effect of an increase in β(z) on e(z) is not the same as that on y(z) because r(z) is also negatively
dependent on β(z). We can verify that the relationship between β(z) and e(z) is inverted-U shaped; e(z) is

decreasing (increasing) in β(z) for β(z) > (<) [a− wα(z)]
2
/(16tϵ̄).



Proposition 1. An increase in the pollution tax rate increases (decreases) the equilibrium
output of each firm in industry z if and only if

α(z)

∫ 1

0

ν(z)α(z)
√

β(z)dz > (<)
√

β(z)

∫ 1

0

ν(z)α(z)2dz (16)

is satisfied.

To understand this result, suppose that n(z) = n. Then, (16) can be simplified to

α(z)

∫ 1

0

α(z)
√

β(z)dz > (<)
√

β(z)

∫ 1

0

α(z)2dz. (17)

Suppose further that (i) all industries share a common labor productivity, that is, α(z) = ᾱ
for all z ∈ [0, 1], or (ii) all industries share a common productivity of pollution abatement,
that is, β(z) = β̄ for all z ∈ [0, 1]. In case (i), inequality (17) is reduced to∫ 1

0

√
β(z)dz > (<)

√
β(z),

which means that if industry z has more efficient abatement technology (i.e., a smaller β(z))
than average, an increase in the pollution tax rate enhances production in that industry, and
vice versa. Intuitively, if all firms have the same production technology, for a given emission
coefficient, all firms respond equally to an increase in t by reducing their emission levels.
However, firms with more efficient abatement technologies will increase their abatement
effort more in response to an increase in t, and these firms can afford to increase outputs
without increasing their emissions.

In case (ii), inequality (16) is reduced to

α(z)

∫ 1

0

α(z)dz > (<)

∫ 1

0

α(z)2dz ⇔ α(z) > (<)
µα
2

µα
1

,

where µα
1 ≡

∫ 1

0
α(z)dz and µα

2 ≡
∫ 1

0
α(z)2dz denote the first and second moments of the

technology distribution. The above inequality indicates that if industry z has less efficient
production technology (i.e., a larger α(z)) than a cutoff level equal to µα

2/µ
α
1 , then an increase

in t enhances production that industry, and vice versa. Intuitively, an increase in t reduces
the equilibrium wage w, which means that firms with less efficient production technology
can save more costs, and thus, they have an incentive to increase their outputs.

Since π(z) = y(z)2/b, the following corollary can be established.

Corollary 1. An increase in the pollution tax rate increases (decreases) the equilibrium
profit of each firm in industry z if and only if (16) holds.

From (11) and (14), the general equilibrium effect of the pollution tax on the per-firm
emissions in industry z is

de(z)

dt
=

∂e(z)

∂w

dw

dt
+
∂e(z)

∂t
= −

√
ϵ̄β(z)

{
a
[∫ 1

0
ν(z)α(z)2dz − α(z)

∫ 1

0
ν(z)α(z)dz

]
+ α(z)L

}
2b [n(z) + 1] t3/2

∫ 1

0
ν(z)α(z)2dz

.

(18)
The following proposition states a sufficient condition for (18) to be negative.



Proposition 2. An increase in the pollution tax rate reduces the equilibrium emission level
of each firm in industry z if α(z)

∫ 1

0
ν(z)α(z)dz ≤

∫ 1

0
ν(z)α(z)2dz.

Proposition 2 indicates that if industry z has a sufficiently efficient production technol-
ogy compared to other industries such that its unit labor requirement is not greater than∫ 1

0
ν(z)α(z)2dz

/ ∫ 1

0
ν(z)α(z)dz, then an increase in the pollution tax rate reduces emissions

in industry z. By contrast, for industries with sufficiently less efficient production technology,
more stringent environmental policy might result in more pollution.

Although an increase in the pollution tax rate can lead to more pollution in some in-
dustries, total pollution in the economy, E, is shown to be unambiguously decreasing in t.11

From (12) and (14), the general equilibrium effect of the pollution tax on the economy’s
total pollution can be derived as

dE

dt
=

∂E

∂w

dw

dt
+

∂E

∂t
= −

√
ϵ̄∆

2t3/2
∫ 1

0
ν(z)α(z)2dz

, (19)

where

∆ ≡ a

[∫ 1

0

ν(z)
√

β(z)dz

∫ 1

0

ν(z)α(z)2dz −
∫ 1

0

ν(z)α(z)dz

∫ 1

0

ν(z)α(z)
√

β(z)dz

]
+ L

∫ 1

0

ν(z)α(z)
√

β(z)dz > 0.

Proposition 3. Suppose that all industries operate; y(z) > 0 for all z ∈ [0, 1]. Then,
an increase in the pollution tax rate reduces the equilibrium level of total pollution in the
economy.

Proof. See the Appendix.

4 Conclusion

Applying a simple GOLE model, we have shown that although more stringent environmental
policy unambiguously reduces total pollution in the economy, some industries may benefit
from such policy. Specifically, if an industry has firms that have more efficient abatement
technology and/or less efficient production strategies, that industry is more likely to benefit
from stricter environmental regulations. Unlike the well-known Porter hypothesis, we do
not consider firms’ investment in innovative activities but consider the general equilibrium
response in the factor market. Thus, our study offers new insight into the relationship
between environmental regulation and productivity. Our theoretical results also provide a
hypothesis that can be tested empirically; if one obtains industry-level productivity with
respect to output and pollution abatement, comparing these variables with the economy-
wide average levels of those variables can reveal whether environmental regulation benefits
an industry.

11Proposition 3 contrasts with the discussion in Fullerton and Heutel (2007, 2010) that in their competitive
general equilibrium model, stricter environmental policies may increase total pollution.
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Appendix: Proof of Proposition 3

From (9) and (14), y(z) > 0 for all z ∈ [0, 1] if and only if∫ 1

0
ν(z)α(z)

{
a− 2

√
tϵ̄β(z)

}
dz − L∫ 1

0
ν(z)α(z)2dz

<
a− 2

√
tϵ̄β(z)

α(z)
,

or, equivalently,

α(z)

∫ 1

0

ν(z)α(z)
{
a− 2

√
tϵ̄β(z)

}
dz − α(z)L <

[
a− 2

√
tϵ̄β(z)

] ∫ 1

0

ν(z)α(z)2dz.

Multiplying both sides of the above inequality by ν(z)
√

β(z) and integrating it over z ∈ [0, 1],
we have∫ 1

0

ν(z)
√
β(z)α(z)dz

∫ 1

0

ν(z)α(z)
{
a− 2

√
tϵ̄β(z)

}
dz − L

∫ 1

0

ν(z)
√

β(z)α(z)dz

<

∫ 1

0

ν(z)
√

β(z)
[
a− 2

√
tϵ̄β(z)

]
dz

∫ 1

0

ν(z)α(z)2dz,

or, equivalently,

2
√
tϵ̄

{∫ 1

0

ν(z)α(z)2dz

∫ 1

0

ν(z)β(z)dz −
[∫ 1

0

ν(z)α(z)
√
β(z)dz

]2}
< ∆, (20)

where ∆ is defined as in the text. Let f(z) ≡
√

ν(z)α(z) and g(z) ≡
√

ν(z)β(z). Then, by
the Cauchy–Schwarz inequality for integrals,∫ 1

0

ν(z)α(z)2dz

∫ 1

0

ν(z)β(z)dz ≥
[∫ 1

0

ν(z)α(z)
√
β(z)dz

]2
holds, which means that the left-hand side of inequality (20) is nonnegative, and thus, ∆ > 0.
This completes the proof that dE/dt < 0.


