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1 Introduction

A network game is introduced by Jackson and Wolinsky (1996) to study what networks

emerge through self-interested agents’ interaction. One of the problems for the resulting

networks is over/under-connection among players relative to the socially optimal networks

due to externalities. In view of an efficient network design, how to deal with this problem

and accomplish socially optimal networks is one of the main issues.

In this note, we provide a solution to this problem by considering the evolutionary

implementation of efficient networks introduced by Sandholm (2007). Suppose that the

payoff function of each player consists of two different components. One is a common

term among players which can be interpreted as a source of externalities, while the other

is a pairwise idiosyncratic term. As time goes, each pair of players is randomly chosen

and receives an opportunity to add or delete the link. In this stage, the players’ action

choice follows the logit choice rule, which reflects the probability of mistake to take an

action in a similar way of the stochastic evolutionary games.1 The probability depends

on the payoff in a way that an action yielding lower payoffs is less likely to be chosen. In

the process, a social planner can impose a tax according to externalities caused by each

player. We show that a simple Pigouvian pricing rule implements the efficient networks

in the long run.

A notable feature of the evolutionary implementation is that the social planner does

not need to elicit the true type from each individual, which is a main difficulty in construct-

ing a mechanism to achieve a social optimal state. In contrast, our pricing rule depends

only on the common payoff term which is the source of externalities. In this sense, it is

easier to implement the rule than the standard mechanism like a VCG mechanism.

The rest of this note is organized as follows. Section 2 describes the model. Section

3 gives a motivating example to explain how a trade-off between efficient outcome and

stable network arises by self-interested agents’ behavior. Section 4 considers the stochastic

dynamic of network formation and Section 5 gives our main result. Finally, we conclude

the note in Section 6. Proofs and some discussions are relegated to Appendix.

1Stochastic evolutionary games, initiated by Kandori et al. (1993) and Young (1993), where players
mistake uniformly provide an equilibrium selection criterion by examining the robustness of equilibria
against stochastic shocks. Stochastic process with the logit choice rule is considered by Blume (1993).
In the similar spirit, Jackson and Watts (2002) and Tercieux and Vannetelbosch (2006) consider the
stochastic evolutionary approach in network games to obtain the stable network under the uniform
mistake rule.



2 Preliminaries

2.1 Network and Stability

LetN = {1, · · · , n} be a (finite) set of players. A network is described by an undirected

graph whose nodes are players. Let gN = {ij|i, j ∈ N, i ̸= j} be a set of all possible links.

Then, a network g is a subset of gN . We denote the set of all networks by G
N = {g|g ⊂

gN}. For each network g ∈ G
N and player i ∈ N , let Ni(g) = {j ∈ N |i ̸= j and ij ∈ g}

be the set of i’s neighborhood in g. For each S ∈ 2N and g ∈ G
N , let g|S = {ij ∈ g|i ∈

S and j ∈ S} be a restricted network whose nodes are in S. We denote by G
S the set

of networks where the set of players is S. For each ij ∈ g, let g − ij = g\{ij} be the

network which remains after removing a link ij from g. Similarly, for each ij /∈ g, let

g+ ij = g ∪ {ij} be the network formed by adding a link ij to g. The payoff function for

player i ∈ N is denoted by φi : G
N → R. Following Jackson and Wolinsky (1996), we call

φ = (φi)i∈N a network game.

A solution concept on network games is pairwise stability defined by Jackson and

Wolinsky (1996). A network is pairwise stable if there is neither a player who wants to

sever the link with his neighbor nor a pair of players who agree to make a new link.

Definition 1. A network g is pairwise stable if

(i) for all ij ∈ g, φi(g) ≥ φi(g − ij) and φj(g) ≥ φj(g − ij), and

(ii) for all ij /∈ g, if φi(g) < φi(g + ij) then φj(g) > φj(g + ij).

2.2 Payoffs

In our model, we assume that each player has two different components in the payoff:

one is common value and the other is pairwise idiosyncratic value.2 Let u : G → R be the

common value and θij : {∅, ij} → R for each i, j ∈ N be the pairwise idiosyncratic value.

We assume the θij = θji, i.e., symmetric for each pair. Let Θ be the set of all profiles of

pairwise idiosyncratic values and let θ = (θij)i,j∈N ∈ Θ be a typical element. Summing

the two components, player i’s payoff function is given by

φi(g) = u(g) +
∑

j ̸=i

θij(g|{i,j}).

We discuss some examples of this model in Appendix C.

2For each network g ∈ G, each player is affected by positive/negative externalities through the common
component u in addition to the direct effects from idiosyncratic components. Due to this, there might
be cases where over/under-connection among players relative to the socially efficient networks occurs.



Figure 1: Motivating Example
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3 Motivating Example

The figure 1 based on Jackson (2008) illustrates over-connection problem. In the

example, we see that the unique stable network is the complete network, but this network

is Pareto dominated by the efficient network.

There are four players. Each number in the circle indicates each player and each

number below or above the circle indicates each player’s payoff. We assume that θ12 =

θ14 = θ23 = θ34 = 1.5, θ13 = θ24 = 4 if such pair has link in the network and 0 otherwise.

We also assume that u(g1) = 0, u(g2) = −1, u(g3) = u(g4) = −2, u(g5) = −3, u(g6) = −4,

u(g7) = −5, u(g8) = −6, and u(g) is sufficiently small for networks other than these eight

networks. In the figure, an arrow represents an improving path, that is, the sequences

of networks that can emerge as players add and delete links in a way that makes them



better off. It is easy to see that the rest points of such a process are stable networks. In

this example, the unique stable network g8 is Pareto dominated by the efficient network

g4. The reason for the inefficiency is that having more links increases the idiosyncratic

payoff although it has negative externalities, i.e., it decreases the common payoff.

4 Stochastic Evolutionary Dynamics

Suppose that each player has common and idiosyncratic components and these payoff

relevant information does not change in the long-run behavior. Consider an infinite hori-

zon discrete time process (gt)t∈Z+ . In each period, one pair is chosen and they can change

the current situation by removing or making a link. Following Hsieh et al. (2017), in each

period, one of the following events happens:

Link Formation: At rate χ > 0, a pair of agents ij which is not already connected

receives an opportunity to form a link. The formation of a link depends on the

marginal payoff the agents receive from the link plus an additive pairwise indepen-

dently and identically distributed exogenous stochastic error term ηij.

Link Removal: At rate ξ > 0, a pair of connected agents ij receives an opportunity to

remove their link. The link is removed if at least one agent finds this profitable. The

marginal payoffs from removing the link ij are perturbed by an additive pairwise

independently and identically distributed exogenous stochastic error term ηij.

We consider the logit-choice with noise level ε > 0.3 Under this specification, our

dynamic process (gt)t∈Z+ becomes a discrete time Markov chain by the following transition

probabilities:

P ε (gt, gt+1 = gt + ij) = χP ({φi (gt + ij)− φi (gt) + ηij > 0} ∩ {φj (gt + ij)− φj (gt) + ηij > 0}) ,

P ε (gt, gt+1 = gt − ij) = ξP ({φi (gt − ij)− φi (gt) + ηij > 0} ∪ {φj (gt − ij)− φj (gt) + ηij > 0}) .

This Markov chain (gt)t∈Z+ is irreducible and aperiodic. Hence, there is a unique

stationary distribution µε(g), which captures the long-run behavior among players.

In particular, we are interestied in the long-run behavior of the Markov chain where

noise is very small. Let

LSN(u, θ) =
{

g ∈ G
N | lim

ε→0
µε(g) > 0

}

3This means that each error term ηij follows i.i.d. logistic distribution with mean 0 and scale parameter

ε−1, i.e. F (x) =
exp[ε−1x]

1+exp[ε−1x] .



be the set of logit stochastically stable networks.

4.1 Potentials and Stochastic Stability

Under some properties, the above set of networks can be analytically tractable. To

show it, we introduce the concept of network potentials. Network potentials are introduced

by Chakrabarti and Gilles (2007) and a characterization of the class of network games

which admit network potentials is studied by Nakada (2016). The function is analogous to

the potential function defined by Monderer and Shapley (1996) in noncooperative games.

Definition 2. A network game φ = (φi)i∈N admits a network potential if there is a

function ω : GN → R such that, for any g ∈ G
N and ij ∈ g,

φi(g)− φi(g − ij) = ω(g)− ω(g − ij).

If there exists a network potential, we can have the following form of the stationary

distribution.4

Proposition 1. Suppose that a network game φ admits a network potential ω. Then, for

each ε > 0, the unique stationary distribution of logit-response dynamics µε(g) is given by

µε(g) =
exp

[

ε−1ω(g)−mln
(

ξ
χ

)]

∑

g′∈GN exp
[

ε−1ω(g′)−m′ln
(

ξ
χ

)]

where m and m′ are the number of links in g and g′ respectively.

As ε → 0, we obtain

lim
ε→0

µε(g)







> 0 if ω(g) ≥ ω(g′) for all g′ ∈ G
N ,

= 0 otherwise.

Therefore, we immediately obtain the following result.

Theorem 1. Suppose that a network game φ admits a network potential ω. Then, a

network g is stochastically stable if and only if g maximizes ω.

Note that our model has a network potential function

ω(g) = u(g) +
∑

i<j

θij(g|{i,j}).

4This result is a reformulated and slightly generalized version of Theorem 1 in Hsieh et al. (2017)
where both actions and networks are changed according to the dynamics. We discuss a relation between
our model and their model in Appendix B.



Hence, as a collorary, if the potential maximizer is not efficient, then such an inefficient

network lasts in the long run. This is also the case for the example in Section 3.

Corollary 1. Suppose that a network game φ admits a network potential ω and maximiz-

ers of it are not efficient. Then, stochastically stable networks are always inefficient.

5 Implementation of the Efficient Networks

For each i ∈ N , let pi : G
N → R be a pricing function for player i and p = (pi)i∈N be

a payment scheme. If a price scheme p is imposed, the common payoff from a network

g ∈ G
N changes from u(g) to u(g) − pi(g). Then the payoff is described by the pair

(u− p, θ).

The social planer’s objective is summarized by a social choice correspondence, which is

a mapping F : Θ ⇒ G
N . We say that a price scheme p = (pi)i∈N stochastically implements

the social choice correspondence F if for each type profile θ ∈ Θ,

LSN(u− p, θ) = F (θ).

In particular, the efficient social choice correspondence F ∗ : Θ ⇒ G
N is defined by

F ∗(θ) = arg max
g∈GN

W (g, θ)

where

W (g, θ) =
∑

i∈N

φi(g) = nu(g) + 2
∑

i<j

θij(g|{i,j}).

To accomplish this objective, we consider the following payment scheme: for each

i ∈ N and each g ∈ G
N ,

p∗i (g) = −
1

2
(n− 2)

(
u(g)− u(g|N\{i})

)
.

This payment scheme can be interpreted intuitively. As in Sandholm (2007), each

player pays the marginal-externalities price for making links. If player i has a link with

some player j, this link creates externalities u(g) − u(g|N\{ij}) to other n − 2 players.

Then, according to the externality pricing, player i has to pay the amount with j, which

is described by multiplication of −1
2
(n− 2). By considering the all possibilities, player i’s

total payment is −1
2
(n− 2)

(
u(g)− u(g|N\{i})

)
.

The following main result of this paper states that this payment can implement the

efficient networks in the long run.



Theorem 2. The payment scheme p∗ = (p∗i )i∈N stochastically implements the efficient

social choice correspondence.

Theorem 2 states that even individuals’ selfish behavior can induce efficient outcome

by using a suitable payment scheme. This result can be also interpreted as how a cost of

selfish-behavior is internalized.

By Theorem 1, we have LSN(u, θ) = argmaxg∈GNω(g′) ̸= argmaxg∈GNW (g) in general.

Then, the difference of welfare between the efficient outcomes and worst case outcomes is

PoA ≡
maxg∈GNW (g)

ming∈LSN(u,θ)W (g)
,

which is referred to as price of anarchy (e.g., Koutsoupias and Papadimitriou 1999; Pa-

padimitriou 2001; Roughgarden 2005). In the motivating example discussed in section 3,

the price of anarchy is equal to W (g4)/W (g8) = 8/4 = 2. In general, PoA ≥ 1 and it is

increased if there are bad outcomes. Thus, PoA− 1 is considered as a cost of individual’s

selfish-behavior. According to our payment scheme, LSN(u− p∗, θ) = argmaxg∈GNW (g),

so that there are no bad outcomes. That is, all the cost PoA− 1 is internalized and the

price of anarchy is minimized to 1.

Corollary 2. Whatever the price of anarchy PoA is in the original model, the payment

scheme p∗ = (p∗i )i∈N can achieve the minimum price of anarchy.

6 Concluding Remarks

In this note, we provide a solution to a trade-off between efficiency and inefficiency

caused by individuals’ selfish behavior. In contrast to the standard mechanism design

approach, we consider the long-run behavior of each agent. We remark some points about

our results.

In the model, we assume that the former term u(·) is common knowledge among players

and the social planner but the latter term (θij)i,j∈N is private information of players.

A notable feature of this result is that social planner does not need to gather private

information of players θij because this pricing rule only depends on the common term u(·)

but does not depend on the individual term θij. Therefore, there is no incentive problem

to induce a true individual type, which is a central problem in the usual mechanism like

VCG mechanism.

We also mention that our payment scheme p∗ is not a unique rule to implement

efficient networks. More generally, one can show that payment scheme which satisfies

pi(g)− pi(g − ij) = −n−2
2
(u(g)− u(g − ij)) for each i, j ∈ N can also implement efficient



networks. One example is the following uniform rule: pi(g) = −n−2
2
u(g) for each i ∈ N .

Similar result holds for Sandholm (2007), which is not stated in the paper.

Our payment scheme is conditionally effective in the sense that specification of payoff

function and assumption of mistake are heavily used to obtain the result. Nonetheless,

since the rule itself is easy to implement, we believe that this approach is useful in some

applications like Furusawa and Konishi (2007) once we can confirm the game admits a

network potential.

A Proof

Proof of Proposition 1. Note that if there is a network potential, then our transition prob-

abilities becomes

P ε (gt, gt+1 = gt + ij) = χP ({φi (gt + ij)− φi (gt) + ηij > 0} ∩ {φj (gt + ij)− φj (gt) + ηij > 0})

= χP (ω (gt + ij)− ω (gt) + ηij > 0)

= χP (−ηij < ω (gt + ij)− ω (gt))

= χ
exp [ε−1ω (gt + ij)]

∑

g′∈{gt,gt+ij} exp [ε
−1ω(g′)]

,

P ε (gt, gt+1 = gt − ij) = ξP ({φi (gt − ij)− φi (gt) + ηij > 0} ∪ {φj (gt − ij)− φj (gt) + ηij > 0})

= ξP (ω (gt − ij)− ω (gt) + ηij > 0)

= ξP (−ηij < ω (gt − ij)− ω (gt))

= ξ
exp [ε−1ω (gt − ij)]

∑

g′∈{gt,gt−ij} exp [ε
−1ω (g′)]

.

Then, it is enough to show that the distribution µε(g) satisfies the detailed balance

condition: for all g, g′ ∈ G
N , µε(g)P ε(g, g′) = µε(g′)P ε(g′, g).

Observe that the detailed balance condition is trivially satisfied if g′ and g differ in

more than one link since the transition probability is zero. Hence, we consider only the

case of link creation g′ = g + ij and removal g′ = g − ij. For the case of link creation

with a transition from g to g + ij, the detailed balance condition is

exp[ε−1ω(g)−m ln( ξ

χ)]
exp[ε−1ω(g+ij)]

∑
g′∈{g,g+ij} exp[ε−1ω(g′)]

χ=exp[ε−1ω(g+ij)−(m−1)ln( ξ

χ)]
exp[ε−1ω(g)]

∑
g′∈{g,g+ij} exp[ε−1ω(g′)]

ξ,

which is clearly satisfied. A similar argument holds for the removal of a link with a

transition from g to g − ij where the detailed balance condition leads

exp[ε−1ω(g)−mln( ξ

χ)]
exp[ε−1ω(g−ij)]

∑
g′∈{g,g−ij} exp[ε−1ω(g′)]

χ=exp[ε−1ω(g−ij)−(m−1)ln( ξ

χ)]
exp[ε−1ω(g)]

∑
g′∈{g,g−ij} exp[ε−1ω(g′)]

ξ.



Hence, µε(g) is the stationary distribution of the Markov chain.

Proof of Theorem 2. Let φ̂i(g) = φi(g)−p∗i (g) =
n
2
u(g)−1

2
(n−2)u

(
g|N\{i}

)
+
∑

j ̸=i θij
(
g|{i,j}

)

be the new network payoff function under the payment scheme. Note that for each ij ∈ g,

φ̂i(g)− φ̂i(g − ij) =
n

2
u(g) (u(g)− u(g − ij)) + θij

(
g|{i,j}

)
− θij

(
(g − ij)|{i,j}

)

=
1

2
(W (g, θ)−W (g − ij, θ)) .

This means that 1
2
W (g, θ) is a network potential for φ̂. Moreover, we can see that

F ∗(θ) = arg max
g∈GN

W (g, θ) = arg max
g∈GN

1

2
W (g, θ).

Therefore, by Theorem 1, we can say that LSN(u− p∗, θ) = F ∗(θ).

B Relation with Potential Games

We explain how network games and non-cooperative games are different, and so are

network potentials and potentials by Monderer and Shapley (1996). Let N = {1, · · · , n}

be a set of players, Ai be a set of actions of player i and πi : A → R be a payoff function of

player i. We call the tuple (N, (Ai, πi)i∈N) a non-cooperative game, or a game for short.

Hereafter, we just call π = (πi)i∈N as a game when there is no confusion. According to

Monderer and Shapley (1996), we say that a function P is a potential function of the

game πi = (πi)i∈N if for any i ∈ N, a ∈ A and a′i ∈ Ai,

πi(a
′
i, a−i)− πi(ai, a−i) = Pi(a

′
i, a−i)− Pi(ai, a−i).

Recall that the primitive of a network game is (N, φ) where φi : G
N → R, which is

not itself a non-cooperative game.

To see the relationship more clearly, let us consider the difference between our model

and that of Hsieh et al. (2017). They consider the following hybrid-model of noncooper-

ative games and network games. 5 Let Ai = R and payoff function be such that

πi(a, g) = nηai − nνa2i − bai
∑

j ̸=i

aj + ρai
∑

j ̸=i

gijaj − ζdi,

where b, η, ν, ρ ∈ R and di = |Ni(g)|. Consider the following function P : A × G
N → R

5This type of game is called game on networks in the literature (Jackson and Zenou 2014).



defined as

P (a, g) =
∑

i∈N

(nηai − nνa2i )−
b

2

∑

i∈N

∑

j ̸=i

aiaj +
ρ

2

∑

i∈N

∑

j ̸=i

gijaiaj − ζm.

By fixing g, they shows that the function P (·, g) : A → R is a potential function in the

sense of Monderer and Shapley (1996).6

Fix a ∈ A and let u(g) ≡ 0 and θij = (ρaiaj − ζ)gij. Then, the model of Hsieh

et al. (2017) is a special class of our model as a network game because φi(g) = φi(a, g) =
∑

j ̸=i(ρaiaj − ζ)gij + Ci where Ci ∈ R is a constant which does not depend on g. In

this sense, our Proposition 1 is a generalization of Theorem 1 of Hsieh et al. (2017) as a

stochastic evolutionary dynamic on network games. Also, our Proposition 1 is not implied

by the result of Blume (1993) because two models are different as we discussed above.

C Examples of the Model

We consider some examples of our model to explain how our model works in the

specific application.

1. Transportation network

An example is a transportation network design among cities. There is a representative

driver in each region and a transportation commissioner who wants to construct a benefi-

cial transportation network for her city. We assume that a direct effect of the construction

of a load between city i and j is measured by a bilateral term θij. In addition to the di-

rect effect, the drivers’ decision on which load to use depends on the whole transportation

network, which is a source of externalities. In particular, when a new load is constructed

between two cities, the total congestion time can be increased, which is known as Braess’

paradox. In this example, such externalities from the congestion correspond to u(g).

We provide a formal micro-foundation to this story. Let N = {1, · · · , n} be a set of

cities and we also denote representative driver in the city by i. Given a transportation

network g, let Ai = 2g be the available routes for each driver. For each ij ∈ a ∈ A, let

nij(a) = |{k ∈ N |ij ∈ ak}| be the number of drivers who use the route ij. Let us define

each representative driver’s payoff function as

πi(a, g) =
∑

jk∈ai;jk∈Ni(g)

Cjk(njk(a)) +
∑

jk∈ai;jk/∈Ni(g)

Djk(njk(a))

6They also show that P (a, ·) : GN → R satisfies the property of network potential when we see the
game as a network game by fixing the action profile a ∈ A (i.e, φi(·) = πi(a, ·)). For their Theorem 1,
they use this property to obtain the stationary distribution of action profiles and networks. However,
they do not mention the relationship between this function and a network potential.



where Cjk, Djk : G
N → R− are decreasing functions. Here, it costs a driver only a

congestion cost to go from her town to a neighbor town. On the other hand, she suffers

an additional cost (such as tolls) when she goes to a distant city. In this sense, we consider

two types of congestion costs, Cij and Dij (ij ∈ g). 7

Suppose that the transportation commissioner in each city seeks to maximize the net

payoff of the representative driver. The commissioner benefits the driver in her region

by constructing loads between her town and other towns. However, it takes a cost (e.g.

maintenance cost) to construct a load, and we assume that the cost is identical to the

congestion cost. Formally, let us define the payoff function of each transportation com-

missioner as

Wi(g, a) = πi(a, g)
︸ ︷︷ ︸

payoff of the driver

+
∑

k ̸=i

∑

ik∈ak;ik∈Ni(g)

Cki(nik(a))

︸ ︷︷ ︸

additional cost

.

Then, by the direct calculation, we can show that,

Wi(g, a) =
∑

l∈N

∑

jk∈al;jk∈Ni(g)

(
Cjk(njk(a))−Djk(njk(a))

)
+
∑

l∈N

∑

jk∈al

Djk(njk(a))

plus constant λi which only depends on g|N\{i}. Let u(g) ≡
∑

l∈N

∑

jk∈al
Djk(njk(a)) and

θij(g|ij) ≡
∑

l∈N ;ij∈al

(
Cij(nij(a))−Dij(nij(a))

)
if ij ∈ g and 0 otherwise. Then, the payoff

function in the network formation by each transportation commissioner is represented as

φi(g) ≡ Wi(g, a) = u(g) +
∑

j ̸=i

θij(g|ij).

2. R&D network

Another example is Cournot competition with R&D networks studied by Hsieh et al.

(2017), which is discussed in Appendix B. Each firm engages in the R&D collaboration

with another firm to reduce production cost, whose benefit is measured by a bilateral term

θij. In the original model of Hsieh et al. (2017), they assume that there is no externalities

from the R&D collaboration. However, it might be the case that research output induces

not only bilateral benefit but also industry-wide externality from knowledge spread, which

corresponds to u(g).

7This is a generalization of the standard congestion game (e.g., Beckmann et al. 1956; Rosenthal 1973)
where congestion cost in any route is assumed same one i.e., C(·) = D(·).
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